Serving and Optimizing Machine Learning Workflows on Heterogeneous Infrastructures

Yongji Wu, Matthew Lentz, Danyang Zhuo, Yao Lu

ML Workflows are Widely Deployed

Multi-Camera Vehicle Tracking

Visual Question Answering

Growth of Heterogeneous Infrastructure

- Inputs derived from sensors at the edge
 - Cameras, IoT devices, etc
 - Some even have support for on-board compute

Boulder Al DNN Cam

- **Connected to more powerful compute over network**
 - Edge-local hubs and cloud computing resources

Many Choices for Serving Workflows

Worker Assignment (WA)

Model Selection (MS)

Different architectures Model compression techniques

JellyBean: Optimizing Execution Plans

Goal

- - Each decision is affected by the
 - Should yield more efficient exect
 - However, search space becomes

Prior work only leveraged WA —

Minimize serving cost subject to throughput and accuracy constraints

Insight: Jointly optimize worker assignment and model selection

other	System	Parallelism	Q MS	O WA
ution plans	PyTorch [52]	Data	×	×
	TF [12]	Data	×	×
s much larger!	Spark [65]	Data	×	×
	Clipper [21]	Data	×	×
	Ray [47]	Data, Model	×	×
	Optasia [42]	Data, Op	×	\checkmark
	Pathways [14]	Data, Model	×	×
	Llama [58]	Data, Op	×	\checkmark
	Scrooge [27]	Data, Op	×	\checkmark
	JellyBean (Ours)	Data, Op	\checkmark	\checkmark

JellyBean: System Overview

- Profile models across workers to understand impact of model selection
- Use profiles (and constraints) to compute an optimized execution plan

Overview of User Inputs

Infrastructure

Properties of the available compute and network resources: Type (e.g., CPU, V100 GPU), Count, Bandwidth, Cost

Targets for minimum accuracy and supported throughput

A directed acyclic graph (DAG) with nodes as inputs or operators (ML / relational)

User Inputs: Model Choices

Many model variants with different accuracy-efficiency tradeoffs

User Inputs: Infrastructure Tiers

Heterogeneous (Across Tiers)

Homogeneous (Within Tiers)

Compute accuracy response for model based on direct upstream models 2 We assume output accuracy is monotonically increasing w.r.t. input accuracy

Acc = ?

Query Optimizer: Objective Function

 $s.t. acc \ge A, t_{v_{out}}^{a(v_{out})} \ge T$

Assumptions

"Communication among workers within a tier is free" $\rightarrow C_B$ set to 0 "Communication is one way from lower to upper tiers" $\rightarrow C_B$ set to ∞

Communication Cost

Based on bandwidth cost between workers **C**_B and the consumed bandwidth **R** for output of one model as input to the other

Query Optimizer: Approaches to MS and WA

Model Selection

- Go in reverse topological order
 - Final accuracy must satisfy the user's minimum constraint
 - Keep top selections in the beam based on simplified cost model (assume most powerful worker)

Worker Assignment

- Go in topological order
 - Reasonable approximation given realistic workflows (and one-way assumption)
- Greedy choice of lowest-cost workers (preferring lower tiers)
 - Keep top assignments in the beam based on accurate cost model (knowledge of worker)

Query Processor

(Naiad)

Our Extensions for JellyBean:

- Support for operator-level parallelism instead of data-level parallelism
- Support heterogeneous runtimes 2
- Support relational operators (e.g., filter, join) 3

Timely Dataflow provides a low-overhead dataflow abstraction

Evaluation: Inputs

Workflows

NVIDIA AI City Challenge (AICity)

Visual Query Answering (VQA)

Infrastructures

5/9/15/30 workers (CPU & GPU) divided into multiple tiers

Example: JellyBean Execution Plan for VQA

"Medium" Infrastructure:

Constraints: Throughput ≥ 20 rps Accuracy ≥ 0.56

Evaluation: Total Serving Cost

Baselines: Note: All use most accurate models FF = First Fit (Cheapest worker on any tier) **BF = Best Fit** (Cheapest worker on current tier) **PTc = PyTorch on Cloud**

(One cloud GPU worker)

SPc = Spark with PyTorch (All cloud GPU workers)

Ideal:

LB = Lower Bound (Brute force over all plans)

PTe = PyTorch on Edge (One edge GPU worker)

Evaluation: Serving Cost vs Throughput

JellyBean (JB) can keep up with increasing throughputs (and is near optimal)

Summary

JellyBean: Automatically optimizes deployments for ML workflow serving

Jointly leverages worker assignment and model selection

Optimized plans can significantly reduce the total serving cost

https://github.com/libertyeagle/JellyBean