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ML Workflows are Widely Deployed
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• Inputs derived from sensors at the edge 

• Cameras, IoT devices, etc


• Some even have support for on-board compute


• Connected to more powerful compute over network 

• Edge-local hubs and cloud computing resources

Growth of Heterogeneous Infrastructure
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Many Choices for Serving Workflows
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# Model Accuracy Size Cost

A wav2vec2-
base 70% 94 M Low

B wav2vec2-
large 75% 315 M High
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• Insight: Jointly optimize worker assignment and model selection


• Each decision is affected by the other


• Should yield more efficient execution plans


• However, search space becomes much larger!

JellyBean: Optimizing Execution Plans

Goal     Minimize serving cost subject to throughput and accuracy constraints

• Prior work only leveraged WA



JellyBean: System Overview
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1 Profile models across workers to understand impact of model selection

2 Use profiles (and constraints) to compute an optimized execution plan

3

3 Deploy and run execution plan across heterogeneous infrastructure



Overview of       User Inputs

A directed acyclic graph (DAG) with nodes as inputs or operators (ML / relational)

Each ML operator may have one or more model choices

Provides a validation set for each ML operator for automated profiling

Workflow

Infrastructure

Constraints

Properties of the available compute and network resources:

Type (e.g., CPU, V100 GPU), Count, Bandwidth, Cost

Targets for minimum accuracy and supported throughput 

A …
B …



     User Inputs: Model Choices

Many model variants with different accuracy-efficiency tradeoffs



     User Inputs: Infrastructure Tiers
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Offline Profiling: Impact of Model Selection?
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1 Compute mean throughput for model on each infrastructure worker

2 Compute accuracy response for model based on direct upstream models

Acc = X

Acc = Y
Acc = ?

We assume output accuracy is monotonically increasing w.r.t. input accuracy
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Query Optimizer: Objective Function

arg min
a, s ∑

v∈V
∑

w∈a(v)

Cc(s(v), w) + ∑
(u,v)∈E

∑
(wu, wv) ∈
a(u) × a(v)

CB(wu, wv)R(u, v)

s . t . acc ≥ A, ta(vout)
vout

≥ T

a: worker assignment

s: model selection

Compute Cost Communication Cost

“Communication among workers within a tier is free” → CB set to 0
Assumptions

“Communication is one way from lower to upper tiers” → CB set to ∞

Based on unit compute cost 
CC for worker w to execute 

selected model s(v)

Based on bandwidth cost between workers 
CB and the consumed bandwidth R for output 

of one model as input to the other



• Go in reverse topological order


• Final accuracy must satisfy the 
user’s minimum constraint


• Keep top selections in the beam 
based on simplified cost model  
(assume most powerful worker)

Query Optimizer: Approaches to MS and WA

Model Selection Worker Assignment

• Go in topological order


• Reasonable approximation 
given realistic workflows (and 
one-way assumption)


• Greedy choice of lowest-cost 
workers (preferring lower tiers)


• Keep top assignments in the 
beam based on accurate cost 
model (knowledge of worker)



Query Processor

Timely Dataflow provides a low-overhead dataflow abstraction 
       (Naiad)

Our Extensions for JellyBean:

1 Support for operator-level parallelism instead of data-level parallelism

2 Support heterogeneous runtimes

3 Support relational operators (e.g., filter, join)



Evaluation: Inputs

NVIDIA AI City Challenge (AICity)

Visual Query Answering (VQA)
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Example: JellyBean Execution Plan for VQA

“Medium” Infrastructure:
CPUx2
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Constraints: 
Throughput ≥ 20 rps

Accuracy ≥ 0.56
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Evaluation: Total Serving Cost

FF = First Fit 
(Cheapest worker on any tier)


BF = Best Fit 
(Cheapest worker on current tier)


PTc = PyTorch on Cloud 
(One cloud GPU worker)


SPc = Spark with PyTorch 
(All cloud GPU workers)

LB = Lower Bound 
(Brute force over all plans)

PTe = PyTorch on Edge 
(One edge GPU worker)

Baselines:

Ideal:

JellyBean (JB) saves serving costs up to 58.1% 
compared to the best-performing baseline

Note: All use most accurate models



Evaluation: Serving Cost vs Throughput

JellyBean (JB) can keep up with increasing throughputs (and is near optimal)



JellyBean: Automatically optimizes deployments for ML workflow serving 

Jointly leverages worker assignment and model selection


Optimized plans can significantly reduce the total serving cost

Summary

https://github.com/libertyeagle/JellyBean

https://github.com/libertyeagle/JellyBean

