

Poisoning Attacks to Local Differential Privacy Protocols for Key-Value Data

> Yongji Wu, Xiaoyu Cao, Jinyuan Jia, Neil Zhenqiang Gong

Background

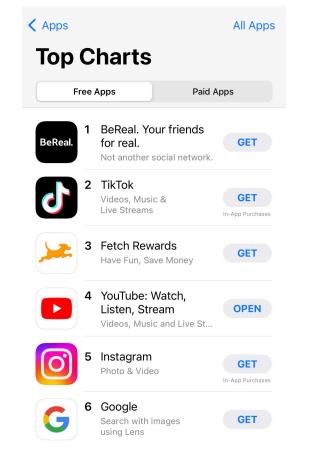
- Companies are collecting more and more data...
- Key-value data is pervasive data form, widely used in:

Recommender Systems	Internet of Things	Application Usage Analytics
(item_id, rating)	(sensor_id, data)	(func_id, timestamp)

Key-Value Data Collection - RecSys

く Ger	neral iPhone St	torage Q
ų	Teams Last Used: 7/4/22	576.5 MB >
	Telegram Last Used: Today	551.4 MB >
7	PDF Viewer Last Used: 7/17/22	551.3 MB >
	YouTube Last Used: Today	533.1 MB >
	Overcast Last Used: Yesterday	491.9 MB >

What apps have you installed? How frequently you use them?



What's the most popular apps?

Ratings & Reviews Se		See All	
4.7 out of 5	**** **** *** **		26,770,382 Ratings

How about their average ratings?

What about User Privacy?

PRO CYBER NEWS larriott P BUSINESS

Capital One Reports Data Breach Affecting 100 Million Customers, Applicants

Alleged hacker, a former employee of Amazon Web Services, arrested by federal agents in Seattle A 21-Year-of customer

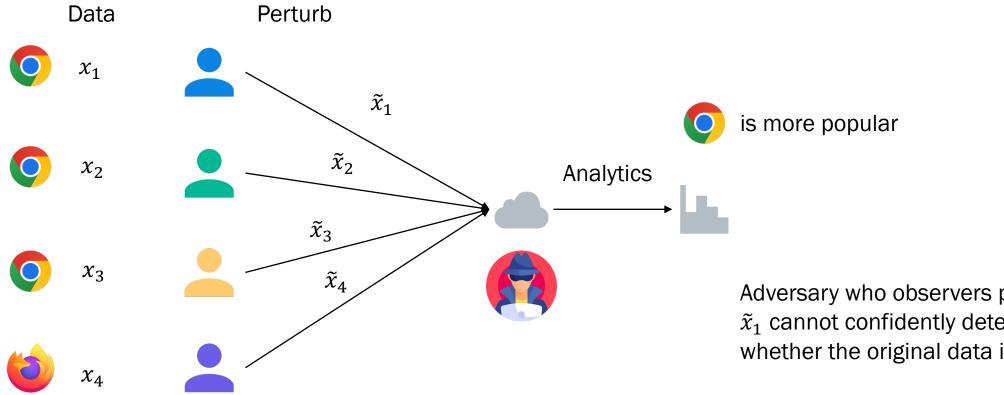
Data on 50

Solution

- Locally-private data collection
- Raw data never leaves user's device

20

Local Differential Privacy (LDP)

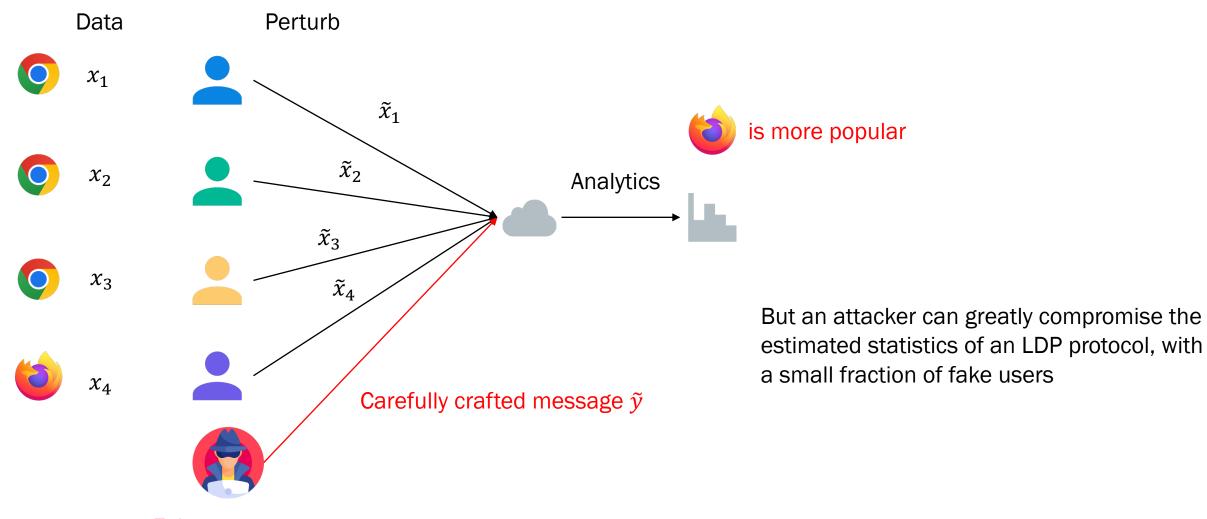


Adversary who observers perturbed data \tilde{x}_1 cannot confidently determine whether the original data is x_1 or x_2

Protocols for KV Data Collection

- PrivKVM [Ye, et al; S&P 19]
- PCKV-UE [Gu, et al; USENIX Security 20]
- PCKV-GRR [Gu, et al; USENIX Security 20]

LDP is Vulnerable to Attacks



Fake user

LDP Protocols for Key-Value Data

- We have a dictionary of d keys
- Each user has a set of KV pairs $\langle k, v \rangle$, where v is normalized into [-1,1]
- We want to estimate the frequency and mean of each key

Threat Model

Attacker's goal

Promote frequency and mean estimation of some target keys

Attacker's knowledge

LDP protocol, including the parameter settings

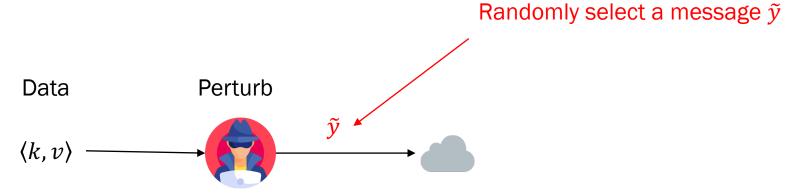
Attacker's capability

- Insert a small fraction of fake users
- Craft their messages

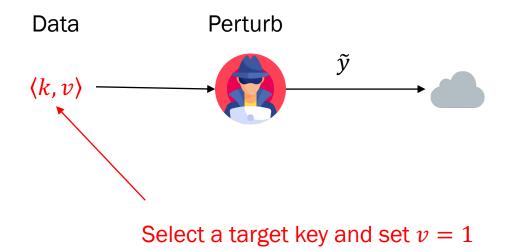
Our Three Attacks

- Baselines
 - Random Message Attack (RMA)
 - Random Key-Value Pair Attack (RKVA)
- Maximal Gain Attack (M2GA)

Random Message Attack (RMA)



Random Key-Value Pair Attack (RKVA)



Maximal Gain Attack (M2GA)

- Maximize the gains
- Solve the two-objective optimization problem:

 $\max_{\mathbb{Y}}egin{bmatrix} G_f(\mathbb{Y}) \ G_m(\mathbb{Y}) \end{bmatrix}$

 \mathbb{Y} : crafted messages for the fake users G_f : frequency gain G_m : mean gain

Theoretical evaluation

	PrivKVM	PCKV-UE	PCKV-GRR
M2GA	$rac{eta}{1+eta}\left[1-f_{\mathbb{T}}+rac{2-r}{e^{arepsilon/2}-1} ight]$	$rac{eta\ell}{1+eta}\left[2r-f_{\mathbb{T}}+rac{4r}{e^{\varepsilon}-1} ight]$	$\frac{\beta}{1+\beta} \left[(1-f_{\mathbb{T}})\ell + \frac{2(d'-r)}{e^{\varepsilon}-1} \right]$
RMA	$\frac{\beta}{1+\beta} \left[\frac{(e^{\varepsilon/2} - 2d + 1)r}{2(e^{\varepsilon/2} - 1)d} - f_{\mathbb{T}} \right]$	$rac{eta\ell}{1+eta}\left[rac{4e^{arepsilon}r}{3(e^{arepsilon}-1)}-f_{\mathbb{T}} ight]$	$rac{eta(r{-}f_{\mathbb{T}}d')\ell}{(1{+}eta)d'}$
RKVA	$rac{eta}{1+eta}\left[1-f_{\mathbb{T}}+rac{1-r}{e^{arepsilon/2}-1} ight]$	$rac{eta \ell}{1+eta} \left(1-f_{\mathbb{T}} ight)$	$rac{eta\ell}{1+eta}\left(1-f_{\mathbb{T}} ight)$

We can theoretically analyze the frequency and mean gains

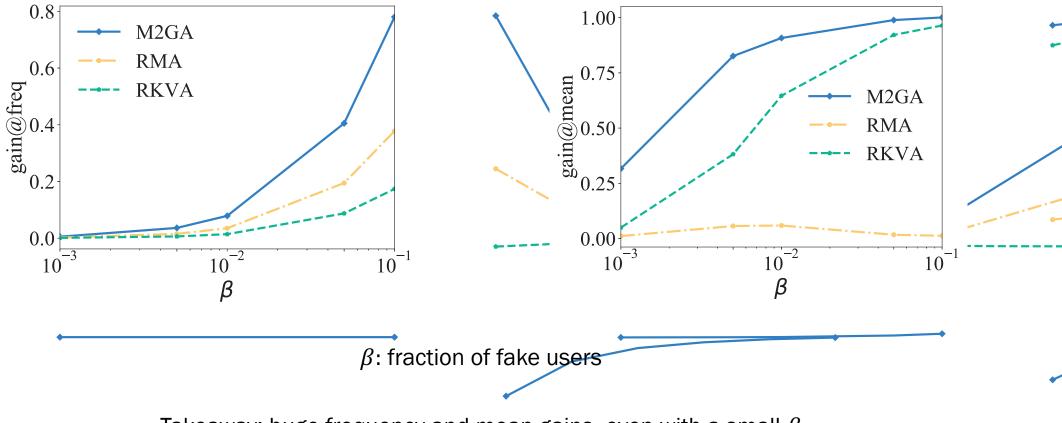
Read our paper for more details

Theoretical evaluation - takeaways

- M2GA is the best-performing attack;
- The frequency gain of an attack increases as # of fake users increases;
- The smaller the true mean value is, the larger the (approximate) mean gain is.

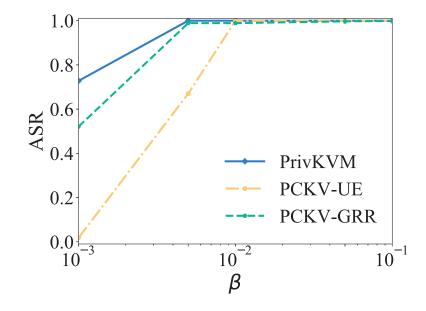
Promoting one target key in a rating dataset with PCKV-UE protocol

 (\mathcal{B})



Takeaway: huge frequency and mean gains, even with a small eta

Empirical Evaluation – RecSys



Promoting 10 target items in a recommender system

Takeaway: even with a small β , recommendation result is greatly compromised

ASR: success rate (fraction of the 10 target items that are among the top-20 after attack)

Defenses - detect fake users

- One-class classifier
- Anomaly score

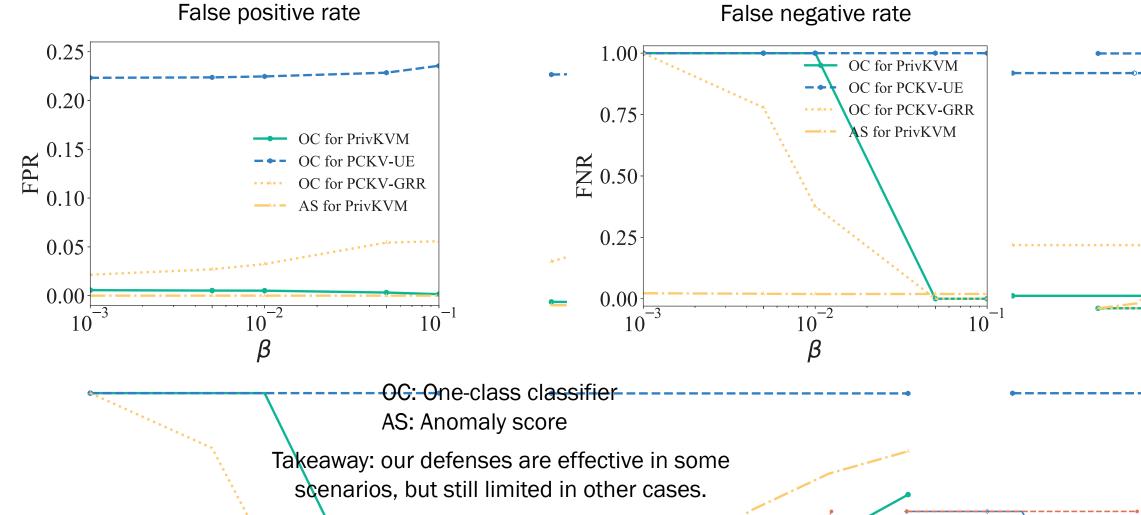
One-class classifier

- Treat each user's message as its features.
- Assumption
 - Server knows a fraction of genuine users

Anomaly score

- Multiple rounds of communications are conducted in PrivKVM
- We can then check consistency of messages from a user across multiple rounds
- We assign an anomaly score to each user
- If the score is greater than anomaly threshold $\eta,$ consider the user to be fake

Defense results



Conclusion

- Key-value LDP protocols are vulnerable to poisoning attacks
- An attacker can promote frequency / mean of any target items
- We highlight the need for strong defenses against such attacks
 - Our defenses help to a degree, but there is more work to do