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Background

 Companies are collecting more and more data...
* Key-value data is pervasive data form, widely used in:

Recommender Systems

Internet of Things

(item_id, rating)

(sensor_id, data)

Application Usage Analytics

(func_id, timestamp)




Key-Value Data Collection - RecSys
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What about User Privacy?
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Local Differential Privacy (LDP)
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Adversary who observers perturbed data
X, cannot confidently determine
whether the original data is x; or x,




Protocols for KV Data Collection

* PrivkVM [Ye, et al; S&P 19]
 PCKV-UE [Gu, et al; USENIX Security 20]
* PCKV-GRR [Gu, et al; USENIX Security 20]




LDP is Vulnerable to Attacks
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But an attacker can greatly compromise the
estimated statistics of an LDP protocol, with
a small fraction of fake users

Carefully crafted message y

Fake user



LDP Protocols for Key-Value Data

* We have a dictionary of d keys

e Each user has a set of KV pairs (k, v), where v is normalized into
[_1'1]

 We want to estimate the frequency and mean of each key



Threat Model

Attacker’s goal Promote frequency and mean estimation of some target keys

Attacker’'s knowledge LDP protocol, including the parameter settings

* Insert a small fraction of fake users
e Craft their messages

Attacker’s capability




Our Three Attacks

* Baselines
* Random Message Attack (RMA)
* Random Key-Value Pair Attack (RKVA)

 Maximal Gain Attack (M2GA)



Random Message Attack (RMA)

Randomly select a message y

Data Perturb /
y
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Random Key-Value Pair Attack (RKVA)

Data Perturb

Select atarget keyand setv =1



Maximal Gain Attack (M2GA)

* Maximize the gains
» Solve the two-objective optimization problem:

G¢(Y) ]
G (Y)

Imax
Y

Y: crafted messages for the fake users
Gy: frequency gain
G,,: mean gain



Theoretical evaluation
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We can theoretically analyze the frequency and mean gains

Read our paper for more details



Theoretical evaluation - takeaways

* M2GA is the best-performing attack;

* The frequency gain of an attack increases as # of fake users
Increases;

* The smaller the true mean value is, the larger the (approximate)
mean gain is.



Empirical Evaluation
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Takeaway:

p: fraction of fake users

huge frequency and mean gains, even with a small

10



Empirical Evaluation - RecSys
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ASR: success rate (fraction of the 10
target items that are among the top-
20 after attack)



Defenses - detect fake users

e One-class classifier
* Anomaly score



One-class classifier

* Treat each user’'s message as its features.

 Assumption
e Server knows a fraction of genuine users



Anomaly score

* Multiple rounds of communications are conducted in PrivkVM

* We can then check consistency of messages from a user across
multiple rounds

* We assign an anomaly score to each user

* If the score is greater than anomaly threshold n, consider the user
to be fake



Defense results

False positive rate
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OC: One-class classifier

AS: Anomaly score

Takeaway: our defenses are effective in some

scenarios, but still limited in other cases.



Conclusion

* Key-value LDP protocols are vulnerable to poisoning attacks
* An attacker can promote frequency / mean of any target items

* We highlight the need for strong defenses against such attacks
* Our defenses help to a degree, but there is more work to do



