
PUNICA: MULTI-TENANT LORA SERVING

Lequn Chen * 1 Zihao Ye * 1 Yongji Wu 2 Danyang Zhuo 2 Luis Ceze 1 3 Arvind Krishnamurthy 1

ABSTRACT
Low-rank adaptation (LoRA) has become an important and popular method for adapting pre-trained models to
specific domains. We present Punica, a system to serve multiple LoRA models in a shared GPU cluster. Punica
contains a new CUDA kernel design that allows batching of GPU operations for different LoRA models. This
allows a GPU to hold only a single copy of the underlying pre-trained model when serving multiple, different
LoRA models, significantly enhancing GPU efficiency in terms of both memory and computation. Our scheduler
consolidates multi-tenant LoRA serving workloads in a shared GPU cluster. With a fixed-sized GPU cluster,
our evaluations show that Punica achieves 12x higher throughput in serving multiple LoRA models compared
to state-of-the-art LLM serving systems while only adding 2ms latency per token. Punica is open-sourced at
https://github.com/punica-ai/punica.

1 INTRODUCTION

Low-rank adaptation (LoRA) (Hu et al., 2022) is becom-
ing increasingly popular in specializing pre-trained large
language models (LLMs) to domain-specific tasks with min-
imal training data. LoRA retains the weights of the pre-
trained model and introduces trainable rank decomposition
matrices to each layer of the Transformer architecture, sig-
nificantly reducing the number of trainable parameters and
allowing tenants to train different LoRA models at a low
cost. LoRA has been integrated into many popular fine-
tuning frameworks (Mangrulkar et al., 2022). Consequently,
ML providers must simultaneously serve a large number of
specialized LoRA models for their tenants’ needs.

Simply serving LoRA models as if they were independently
trained from scratch wastes GPU resources. Assuming we
need k GPUs to serve each LoRA model, serving n different
LoRA models would seemingly require k × n GPUs. This
straightforward approach overlooks the potential weight
correlations among these LoRA models, given they originate
from the same pre-trained models.

We believe an efficient system that serves multiple LoRA
models needs to follow three design guidelines. (G1) GPUs
are expensive and scarce resources, so we need to consoli-
date multi-tenant LoRA serving workloads to a small num-
ber of GPUs, increasing overall GPU utilization. (G2) As
prior works have already noticed (Yu et al., 2022), batching
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is one of the, if not the most, effective approaches to con-
solidate ML workloads to improve performance and GPU
utilization. However, batching only works when requests
are for the exact same model. We thus need to enable batch-
ing for different LoRA models. (G3) The decode stage is
the predominant factor in the cost of model serving. We
thus only need to focus on the decode stage performance.
Other aspects of the model serving are less important, and
we can apply straightforward techniques, e.g., on-demand
loading of LoRA model weights.

Based on these three guidelines, we design and implement
Punica, a multi-tenant serving framework for LoRA models
on a shared GPU cluster. One key novelty is the design of
a new CUDA kernel, Segmented Gather Matrix-Vector
Multiplication (SGMV). SGMV allows batching GPU op-
erations for the concurrent execution of multiple, different
LoRA models. With SGMV, a GPU only needs to store
a single copy of the pre-trained model in memory, signifi-
cantly improving GPU efficiency in terms of both memory
and computation. We pair this new CUDA kernel with a
series of state-of-the-art system optimization techniques.

SGMV allows batching requests from different LoRA mod-
els, and surprisingly, we observe negligible performance
differences between batching the same LoRA models and
batching different LoRA models. At the same time, the on-
demand loading of LoRA models has only millisecond-level
latency. This gives Punica the flexibility to consolidate user
requests to a small set of GPUs without being constrained
by what LoRA models are already running on the GPUs.

Punica thus schedules multi-tenant workloads in the fol-
lowing two ways. For a new request, Punica routes the
request to a small set of active GPUs, ensuring that they
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Figure 1. Batching effects in Prefill stage and in Decode stage

reach their full capacity. Only when the existing GPUs are
fully utilized, Punica will allocate additional GPU resources.
For existing requests, Punica periodically migrates them for
consolidation. This allows freeing up GPU resources that
are allocated to Punica.

We evaluate LoRA models that are adapted from Llama2
7B, 13B, and 70B models (Touvron et al., 2023) on NVIDIA
A100 GPU clusters. Given the same amount of GPU re-
sources, Punica achieves 12x higher throughput compared
to state-of-the-art LLM serving systems while only adding
2ms latency per token.

This paper makes the following contributions:

• We identify the opportunity of batch processing re-
quests of multiple, different LoRA models.

• We design and implement an efficient CUDA kernel
for running multiple LoRA models concurrently.

• We develop new scheduling mechanisms to consolidate
multi-tenant LoRA workloads.

2 BACKGROUND

We first present the text generation process for transformer
models. We then describe Low-Rank Adaptation (LoRA)
of transformer models.

2.1 Transformer and Text Generation

Transformer-based LLMs operate on a sequence of tokens.
A token is roughly ¾ of an English word. An LLM’s opera-
tion consists of two stages. The prefill stage accepts a user
prompt and generates a subsequent token and a Key-Value
cache (KvCache). The decode stage accepts a token and the
KvCache, and it then generates one more token and appends
a column in the KvCache. The decode stage is an iterative
process. The generated token then becomes the input for
the next step. This process ends when the end-of-sequence
token is generated.

A transformer block contains a self-attention layer and a
multilayer perceptron (MLP). Let us assume that the length

of the prompt is s and the attention head dimension is d. For
the prefill stage, the computation of the self-attention layer is
(s, d)× (d, s)× (s, d), and the MLP computation is (s, h)×
(h, h). For a decode step, assuming s represents the past
sequence length, the computation of the self-attention layer
is (1, d)× (d, s+1)× (s+1, d) and the MLP computation
is (1, h)× (h, h). The decode stage has low GPU utilization
because the input is a single vector.

Figure 1 shows the latency for the prefill stage and the de-
code stage for different batch sizes. The GPU’s computation
capability is fully utilized during the prefill stage. Prefill
latency is proportional to batch size. However, this is not
the case for the decode stage. Increasing the batch size
from 1 to 32, the decode step latency increases from 11ms
to 13ms for short sequences and from 17ms to 34ms for
longer sequences. This means that batching can improve
GPU utilization significantly for the decode stage. Orca (Yu
et al., 2022) leveraged this opportunity to build an efficient
LLM serving system. This type of batching is especially im-
portant because the decode stage predominately determines
the serving latency for long output length responses.

2.2 Low-Rank Adaptation (LoRA)

Fine-tuning allows a pre-trained model to adapt to a new
domain or a new task or be improved with new training data.
However, because LLMs are large, fine-tuning all the model
parameters is resource-intensive.

Low-Rank Adaptation (LoRA) (Hu et al., 2022) significantly
reduces the number of parameters needed to be trained dur-
ing fine-tuning. The key observation is that the weight
difference between the pre-trained model and the model
after fine-tuning has a low rank. This weight difference can
thus be represented as the product of two small and dense
matrices. LoRA fine-tuning then becomes similar to training
a small, dense neural network. Formally, let’s consider the
weights of the pre-trained model to be W ∈ Rh1×h2 . LoRA
fine-tuning trains two matrices A ∈ Rh1×r and B ∈ Rr×h2 ,
where r is the LoRA Rank. W +AB is the new weight for
the fine-tuned model. LoRA rank is usually much smaller
than the original dimension (e.g., 16 instead of 4096). In
addition to fast fine-tuning, LoRA has very low storage
and memory overheads. Each fine-tuned model only adds
0.1% to 1% of the model weight. LoRA is usually applied
to all dense projections in the transformer layer (Dettmers
et al., 2023), including the Query-Key-Value-Output projec-
tions in the attention mechanism and the MLP. Note that the
self-attention operation itself does not contain any weight.

How to serve multi-tenant LoRA models efficiently on
a shared GPU cluster? LoRA provides an efficient algo-
rithm to fine-tune LLMs. Now the question is: How can
those LoRA models be served efficiently? One approach is
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Figure 2. The system architecture of Punica.

to regard each LoRA model as an independent model and
use traditional LLM serving systems (e.g., vLLM). However,
this neglects the weight sharing among different LoRA mod-
els that can be used to significantly improve GPU efficiency.
Further, if we treat each LoRA model as an independent one,
model loading time can be a substantial performance bottle-
neck when bootstrapping model serving. Even if we share
the backbone model across the LoRA models, the ques-
tion of how to batch compute the LoRA addon efficiently
remains.

3 PUNICA OVERVIEW

We design Punica as a multi-tenant system that manages
a cluster of GPUs to serve multiple LoRA models with
shared pre-trained backbone models. Figure 2 shows the
system architecture of Punica. Like other model serving
systems, Punica has frontend servers that expose RESTful
API to end-users and forward users’ serving requests to the
Punica scheduler. A user request contains the identifier of
the LoRA model and a prompt. The scheduler dispatches
requests to the GPUs. Each GPU server starts a runner,
which communicates with the scheduler and controls the
execution of all the GPUs. As GPUs generate new tokens,
new tokens are streamed from the runners to the scheduler,
to the frontends, and finally to the end-users.

In Punica, each GPU loads the backbone pre-trained large
language model. A large fraction of GPU memory is re-
served for KvCache. Only the LoRA components of models
are swapped in from remote storage when needed. Note
that this design allows for a fast cold-start for model serving.
Because the pre-trained model is already loaded into the
GPU memory, Punica only needs to load matrices A and B
for a new LoRA model.

Punica needs to address two key research challenges. The
first challenge is how to run multiple LoRA models effi-
ciently on a GPU. Because requests have to be served by
different LoRA models, each request has to go through a
different GPU computation. We use the existing matrix mul-
tiplication for the backbone computation. And we present a
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Y[s[i]:s[i+1]] += X[s[i]:s[i+1]] @ W[i]

Figure 3. Semantics of SGMV.

new CUDA kernel for adding the LoRA addons to the back-
bone computation in a batched manner. We call this kernel
Segmented Gather Matrix-Vector Multiplication (SGMV).
SGMV parallelizes the feature-weight multiplication of dif-
ferent requests in a batch, groups requests by the LoRA
model to increase the arithmetic intensity of the kernel, and
uses GPU Tensor Cores units for acceleration.

The second challenge is designing an efficient system on
top of SGMV for multi-tenant LoRA model serving. Our
goal is to consolidate multi-tenant workloads to the smallest
set of GPUs possible. Punica schedules user requests to
active GPUs, which already serve or train LoRA models.
This is feasible in Punica, because with SGMV adding the
batch size, even if for different LoRA models, improves
GPU utilization. For old requests, Punica migrates them
periodically to consolidate the workloads, thereby freeing
up GPU resources.

Next, we describe the details of Punica’s CUDA kernel and
other design details of Punica.

4 SEGMENTED GATHER MATRIX-VECTOR
MULTIPLICATION

When a LoRA model has multiple inputs in the batch, we
can further batch them together. We group inputs to the
same LoRA model consecutively. Denote n as the number
of LoRA models in a batch. Denote sequence si as the last
element index for i-th model within the batch. In particular,
s0 = 0 and sn is the batch size. Input { #»xi | i ∈ [1, sn]} is
then partitioned as {{ #»xj | j ∈ (si−1, si]} | i ∈ [1, n]}. The
dense projection output can then be written as:




#»y1
...

#  »ys1


...

#              »ysn−1+1

...
#   »ysn




:=




# »x1

...
#   »xs1


...

#               »xsn−1+1

...
#   »xsn




W +




# »x1

...
#   »xs1

A1B1

...
#               »xsn−1+1

...
#   »xsn

AnBn


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The left-hand-side multiplication is the computation for the
backbone model, which is batched through regular GEMM.
We need a fast kernel to compute the right-hand-side LoRA
addon. Note that operator #»y += #»xAB can be separated as
two launches of the same kernel: Initialize #»v :=

#»
0 . Then

we run #»v += #»xA and follow by #»y += #»v B.

We name this operator SGMV, Segmented Gather Matrix-
Vector multiplication. Figure 3 illustrates its semantics.

CUDA Kernel Schedule We classify SGMV operator into
two categories, SGMV-shrink and SGMV-expand, based
on their input and output feature dimensions. The first
operator in the LoRA module: #»v = #»xA is SGMV-shrink
because it shrinks a high-dimensional input feature to low-
rank output. The second operator #»y = #»v B is SGMV-
expand as it expands the low-rank input feature to a high-
dimensional output feature.

Figure 4 shows how we schedule the SGMV kernel in these
two cases: For both kernels, we bind the LoRA index to
blockIdx.y in CUDA. Then, the computation on each
blockIdx.y is a matrix multiplication between features
and a specific LoRA weight. We designed different sched-
ules for matrix multiplication under expand and shrink set-
tings: for the expand kernel, we split A on the output feature
dimension A =

[
A(1) · · · A(n)

]
and dispatch different

#»v (i) = #»xA(i) to different threadblocks in GPU, and the
concatenation #»v (i) on different threadblocks forms the fi-
nal result #»v =

[
#»v (1) · · · #»v (n)

]
; for the shrink kernel,

the output dimension is too thin and we adopt the Split-K
strategy (Thakkar et al., 2023) to increase parallelism: we

split B on the input feature dimension B =

B(1)

· · ·
B(k)

. We

dispatch different #»y (i) = #»v B(i) to different threadblocks in
GPU, after the partial sum { #»y (i)} computation on all thread-
blocks are finished, we perform a grid synchronization fol-
lowed by a cross threadblock reduction #»y =

∑k
i=1

#»y (i) to
aggregate the partial results. We use GPU Tensor Cores to
accelerate matrix multiplication for both kernels.

In the case that each request has a distinct LoRA index,
the computation corresponding to each LoRA index de-
grades to matrix-vector multiplication, which is totally IO-
bound. We designed a specific schedule for this case that
maximizes memory bandwidth utilization and does not use
Tensor Cores because of the operator’s low operational in-
tensity.

5 PUNICA IN DETAIL

Punica schedules new user requests at a per-request level and
migrates old requests between GPUs at a per-iteration level.
The scheduler adds requests to a GPU or cancels a working
request from a GPU. Each GPU batches all requests in its
working set for LLM invocation. GPU runs the Prefill steps
and Decode steps continuously. When a request reaches the
stopping condition (end-of-sequence token or length limit),
the GPU removes the request from the batch and notifies
the scheduler about the stopping.

We run batch requests of prefill and decode stages in a single
model invocation. To minimize latency penalty, we limit the
prefill batch size to 1 for each batch. The single prefill and
the batch of decodes invoke two separate CUDA kernels for
the self-attention operation. All other operations, including
dense projection and LoRA addon, treat all tokens in the
prefill stage and decode stage as a single batch input. In this
way, we increase the batch efficiency of dense projection
and LoRA addon.

5.1 Scheduling new requests

Punica scheduler has a global view of the state of all the
GPUs. In particular, for each GPU, Punica maintains the
working set of requests, which is the batch input of LLM in-
vocation. As new requests are added to the working set and
as the decode steps unfold, the KvCache consumes more
and more GPU memory. Therefore, Punica also continu-
ously tracks the memory space available for KvCache on
each GPU.

Punica schedules a new request to the GPU that currently has
the largest working set of requests (i.e., the LLM invocation
batch size) while satisfying the following constraints: (1)
It has not yet reached the max batch size limit. (2) It has
enough memory for the new request’s KvCache. When there
are multiple candidates, the one with the highest GPU UUID
gets the new request. When all GPUs are fully occupied (i.e.,
have reached the maximum batch size or have insufficient
memory), the request is queued. When some GPUs become
available in the future, queued requests are scheduled in a
first-come-first-serve (FCFS) manner.

The max batch size limit balances the cluster throughput
and the per-token latency. Oversized batches greatly slow
down latency while providing marginal throughput gains.
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We profile A100 GPUs and decide to set the maximum batch
size to 32.

The GPU selection logic emphasizes cluster throughput
within the latency sweet spot. Our scheduling approach
has the following attributes: a busy GPU is likely to stay
busy as more requests will be assigned to it, a lightly loaded
GPU is likely to lower its load as requests terminate, and
an idle GPU is likely to stay idle. As a consequence, our
scheduler maintains peak throughput and consolidates GPU
usage based on the current overall system load. This al-
lows easier decisions to scale up/down the GPU cluster. In
a cloud setting where Punica can allocate and deallocate
GPU servers, we perform the following cluster allocations:
(1) If no lightly loaded GPU exists in the cluster, Punica
should request more GPUs. (2) Punica can return the GPU
resources for GPU servers with no load.

5.2 On-demand model loading

Weight sharing between the LoRA model and the underlying
pre-trained model makes the model load fast. The size of
the LoRA model (which is matrices A and B in §2.2) is
only 1% of the underlying pre-trained model.

Loading a LoRA model from the main memory to the GPU
memory is merely an asynchronous host-to-device memory
copy. The latency is bounded by the PCIe bandwidth. On
PCIe Gen4 x16, it takes around 50µs to load a layer and
2ms to load the entire model. Since the memory copy and
the GPU computation can overlap, it is feasible to imple-
ment sophisticated layer-by-layer or even matrix-by-matrix
loading to minimize the model loading delay.

However, notice that each decode step takes around 30ms
to complete, and each request might need thousands of
decode steps. We opt to use a simpler yet equivalently ef-
ficient method. When a request is newly added to a GPU,
if its LoRA model is not already loaded, we issue an asyn-
chronous memory copy to load the LoRA weight and let the
GPU continue running other inputs in the batch. By the end
of the model execution, the weight already finished loading.
Then, the new request can join the batch naturally.

5.3 Request migration

As each request generates more tokens, their KvCache occu-
pies more GPU memory. When a GPU runs out of space for
KvCache, it migrates some requests to other GPUs. The re-
quest migration consists of two steps — evict and add. The
scheduler evicts the newest request from the GPU. This pre-
serves the FCFS semantics. The scheduling for the evicted
request is the same as adding a new request.

Punica scheduler supports canceling requests. Cancellation
is straightforward: remove the request from both the GPU
and the scheduler states. A typical scenario for cancellation

GPU 1 GPU 2

Frontend Scheduler
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3 4
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Figure 5. Request migration procedure for Request R3.

is user disconnection. More importantly, request cancella-
tion as a scheduling primitive enables request migration.

Figure 5 shows the workflow to migrate Request R3 from
GPU 1 to GPU 2. The scheduler first sends the cancellation
of the request to GPU 1. After GPU 1 finishes the previous
batch, it picks up the cancellation and releases KvCache.
GPU 1 also omits R3’s new token generated in the previous
batch. Immediately after sending the cancellation to GPU
1, the scheduler adds R3 to GPU 2. GPU 2 runs a prefill
step on R3’s original prompt plus all previously generated
tokens. This reinstates the R3’s KvCache on GPU 2. GPU
2 then starts to stream R3’s new tokens to the scheduler.

We opt for recomputation instead of moving KvCache for its
simplicity. PagedAttention (Kwon et al., 2023) shows that
recomputation’s latency is equal to or better than moving
KvCache in most cases, which agrees with our observation.

5.4 Memory layout for KvCache

Punica uses a separable KvCache layout, which is important
for text generation batching throughput. The HuggingFace
Transformers library’s KvCache layout consists of compli-
cated nested lists of tensors, which can conceptually be
viewed as the following shape:

[L, 2, B,N, S,D]

where L is the number of layers, 2 is for Key and Value
projections, B is batch size, N is the number of heads, S is
the sequence length, and D is the head dimension. In each
decode step, Transformers concatenates one tensor along the
sequence length dimension. The concatenation is inefficient
as it needs to read the whole KvCache and write a new copy,
whereas the new tensor is only 1/S of the KvCache.

The bigger problem with the HuggingFace Transformer’s
KvCache layout is that the batching dimension is not the
outermost dimension, which means that requests in the batch
are inseparable. Under this restriction, requests that enter
the batch together must remain together during all decode
steps until all requests meet their own stopping condition.
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Figure 6 is an illustrative figure that explains the problem.
In the figure, four consecutive requests are batched together.
The striped bar represents the number of decode steps that
each request actually needs to reach its stopping condition.
Due to inseparable KvCache, shorter requests in the batch
run additional decode steps, which is essentially wasted
computation. FasterTransformer (Hsueh, 2021) and Deep-
Speed (Aminabadi et al., 2022) also suffer from similar
problems.

Instead, our KvCache layout is

[
∑

i ⌈Si/P⌉ , L, 2, N, P,D]

where Si is the length of the sequence i and P is the page
size. We use paged KvCache (Kwon et al., 2023) to mini-
mize memory fragmentation. We put the batching dimen-
sion at the outermost to enable continuous batching.

6 IMPLEMENTATION

Punica implementations consist of two parts: a Python li-
brary on top of PyTorch that runs large language models
on a single GPU and other system components to support
model serving across a GPU cluster.

Python Library We expose our CUDA kernels as a Py-
Torch Extension using PyBind11. Llama model implemen-
tation is adapted from the HuggingFace Transformers li-
brary. We use FlashInfer (Ye, 2023) open source project
for fast and memory-efficient computation of self-attention.
Besides fusing the computation of softmax(QKT )V like
FlashAttention (Dao et al., 2022) does, FlashInfer further
supports batch decoding without padding. Similar to Page-
dAttention (Kwon et al., 2023), FlashInfer supports paged
KvCache to minimize GPU memory fragmentation due to
KvCache. We also fuse LayerNorm, which reduces latency
from 110µs to 4µs.

We mix new requests in the Prefill stage and existing re-
quests in the Decode stage in one batch together. This way,
dense projections and LoRA can benefit from a bigger batch
size. For batching, we concatenate all inputs along the se-
quence length dimension. We always put Prefill requests at
the beginning and Decode requests at the latter part. We then

pass a BatchLen struct to distinguish different requests.
BatchLen contains a list of indices indicating the starting
index of each Prefill request. It also contains a number indi-
cating the number of Decode requests. In the self-attention
layer, we pass the indices and leading input states to the
BatchPrefill kernel, and we pass the trailing input states
to the BatchDecode kernel. Within a batch, we further or-
ganize the batch input order such that requests that share
the same LoRA model are consecutive. The tail of Prefill
requests and the head of Decode requests can share a LoRA
model if possible. We then generate the segment indices for
the SGMV kernel. Before each batched model invocation,
we concatenate batch inputs and construct BatchLen and
SGMV segment indices. Both BatchLen and SGMV seg-
ment indices remain constant for the entire model invocation.
This design avoids recomputation (L times for BatchLen
and 7L times for SGMV segment indices, where L is the
number of layers).

Other system components We write our scheduler, fron-
tend, and runner in Rust. Unary RPC and streaming text
chunks are both implemented via web socket. I/Os are han-
dled asynchronously. Runner spawns a Python subprocess
for each GPU. The subprocess is a thin warper around our
PyTorch library. The Runner main process communicates
with the subprocesses using pipes.

7 EVALUATION

We evaluate Punica on two testbeds. Testbed #1 is a single
server with one NVIDIA A100 80GB GPU. Testbed #2
consists of two NVIDIA HGX A100 40GB servers with
8 GPUs on each server. Testbed #1 contains a GPU with
large GPU memory, which allows us to study the LoRA
batching effect. Testbed #2 is equipped with fast NvSwitch
technology for us to study tensor parallelism and evaluate
cluster deployment. We use the Llama-2 (Touvron et al.,
2023) model with 7B, 13B, and 70B parameters. For all
experiments, we use 16 as the LoRA rank. LoRA is applied
to all dense projections. We use random weights for LoRA
models as the weight does not affect latency performance.

Workloads Prompt lengths and response lengths are
key workload characteristics for LLM serving. We
use the prompt and response length distributed from
ShareGPT (ShareGPT, 2023), which consists of user-bot
conversations from Internet users. We consider four types
of request distribution among LoRA models. (1) Distinct:
each request is for a distinct LoRA model. (2) Uniform: all
LoRA models are equally popular. Given n requests, we
use ⌈

√
n⌉ models. (3) Skewed: model popularity follows

Zipf-α distribution. The number of requests to the i-th most
popular model is α times that of the i+1-th’s. In our exper-
iments, we choose α to be 1.5. (4) Identical: all requests
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Figure 7. Roofline plot of the SGMV kernel.

are for the same LoRA model.

Baselines Since there is no well-known multi-LoRA serv-
ing system, we compare Punica against a variety of popular
LLM backbone serving systems. We allow various degrees
of relaxation that are in favor of baseline systems. We use
HuggingFace PEFT (Mangrulkar et al., 2022) library to add
LoRA weights to HuggingFace Transformers (Wolf et al.,
2020) library and DeepSpeed (Aminabadi et al., 2022). We
run backbone-only for FasterTransformer (Hsueh, 2021)
and vLLM1 (Kwon et al., 2023) since these two systems do
not support LoRA models. We omit the model switching
costs for baseline systems.

7.1 Microbenchmarks

We use analysis and testbed evaluations to benchmark
SGMV and distill the -performance implications for the
LoRA operator and a single transformer layer.

Roofline analysis for SGMV First, we use the roofline
model (Williams et al., 2009) to understand the performance
of our SGMV kernel. The number of floating point oper-
ations (FLOP) and the number of memory I/O bytes of
SGMV are calculated as:

FLOP =sn × hi × ho × 2

I/O =[sn × (hi + ho) + n× h1 × h2]× 2

where n is the number of LoRA models, s is the segment
indices, sn is the total number of inputs, and hi and ho

are the input and output dimensions of the SGMV weight
matrix. The factor 2 in FLOP comes from multiply-add
operations for matrix multiplication. The factor 2 in I/O
comes from the byte size of 16-bit floating point data type.
We use hi = 16, ho = 4096 for this case study. We measure
the latency of batch size 1 to 64 under the four different
popularity distributions on Testbed #1.

Figure 7 shows the roofline model plot. The x-axis in the
roofline model is arithmetic intensity, which is defined as the
ratio of FLOP to I/O. The y-axis is the achieved throughput

1With commit 928de46

in terms of FLOP per second, calculated using measured
latency. The diagonal dotted line and the top dotted line rep-
resent the memory bandwidth and peak FP16 performance
of the NVIDIA A100 GPU, respectively.

In the Distinct case, the arithmetic intensity does not change
because FLOP and I/O grow at the same rate. Since each
input only utilizes a small amount of GPU compute units,
increasing the batch size increases performance. In the Iden-
tical case, the line goes up diagonally following the slope of
memory bandwidth because SGMV is bounded by memory
bandwidth. The Uniform case and the Skewed case sit in
between, as a combination of both effects, the increasing
degree of parallelism and the increasing arithmetic intensity.

LoRA operator microbenchmark We implement the
batched LoRA operator as two SGMV kernel launches.
We compare our SGMV-based implementation against two
PyTorch-based baseline implementations. One is a for-loop
over each LoRA model. Another is Gather-BMM. In the
gather step, we stack the weight matrices that each input
needs into a single matrix. Then, we use torch.bmm() to
perform a batched matrix multiplication on the input and the
stacked matrix. Similar to SGMV, Gather-BMM launches
Gather twice and BMM twice. Note that Gather-BMM uses
much more I/O than SGMV. Gather reads in n × hi × ho

elements and writes to sn × hi × ho. Then, BMM needs to
read in sn ×hi ×ho weight elements that Gather just wrote.
In combination, Gather-BMM incurs sn×hi×ho×2 more
elements memory I/O than SGMV.

Figure 8 shows the latency comparison of the three imple-
mentations across four workloads on Testbed #1. Gather
and BMM are also measured for reference. Since BMM is
data-independent, its latency is consistent across workloads.

Our benchmark results match our analysis very well. In the
Distinct case, Loop behaves terribly because it runs multiple
rounds of batch size 1. Gather-BMM latency increases fast
due to the slowdown of Gather. SGMV latency increases
gradually as well, from 37µs to 116µs, because batching
does not change arithmetic intensity. The Uniform case and
the Skewed case are similar to the Distinct case. Gather-
BMM performs slightly better than the Distinct case since
there are fewer matrices to read. SGMV latency increases
only marginally, from 37µs to 46µs, as a combination of
both effects: increasing degree of parallelism and increasing
arithmetic intensity. In the Identical case, all implementa-
tions have the same semantics: BMM. We can, therefore,
infer that SGMV implements BMM more efficiently than
torch.bmm() in the case of LoRA. SGMV latency re-
mains almost constant, from 37µs to 40µs.

Overall, SGMV significantly outperforms baseline imple-
mentations regardless of workloads.

https://github.com/vllm-project/vllm/commit/928de46888b9b257dfa491047a7d9cd199ca585b
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Figure 9. Microbenchmark for LoRA operator on various LoRA rank.

We also run the microbenchmark of different LoRA ranks
on Testbed #1. Figure 9 shows the latency for LoRA rank 8,
16, 32, and 64. In the Distinct case, the latency gradually
increases. The latency of a single request batch is around
42µs for all four ranks, while batch size 64 goes up to 72µs,
75µs, 89µs, and 118µs, respectively. When the workload
exists weight sharing (Uniform, Skewed, and Identical),
the latency remains almost the same across batch size 1 to
64, at around 42µs to 45µs.

Transformer layer benchmark Next, we evaluate the
transformer layer performance after incorporating the LoRA
operator. Since the LLM is roughly a stack of transformer
layers, the layer performance determines the overall model
performance. We run the layer benchmark on Testbed #1
based on the 7B and 13B model configurations and sequence
lengths of 512 and 2048. Figure 10 plots the layer latency.
When the sequence length is shorter, the batching effect
is stronger. The latency only increases by 72% when the
batch size increases from 1 to 32 when the sequence length
is 512. When the sequence is longer, self-attention takes
longer time, which reduces the layer-wise batching effect.

In contrast to the kernel microbenchmark, notice that the
layer latency is roughly the same across different workloads.
This is because the computation time for the LoRA add-on
is small compared to the backbone dense projection and
the self-attention. This LoRA-model-agnostic performance
property enables us to schedule different LoRA models as
if one model. Our scheduling algorithm can then focus on
the overall throughput instead of individual LoRA model
placement, which is exactly how we design Punica.

7.2 Text generation

Next, we study the text generation performance of Punica
and baseline systems.

Serving 7B and 13B models on a single GPU We evalu-
ate text generation using Punica and baseline systems on a
single GPU on Testbed #1. The single-GPU performance
serves as the base case for cluster-wide deployment. We
generate 1000 requests (generating around 101k tokens)
and restrict each system to batch in a first-come-first-serve
manner. The max batch size is set to 32 for all systems.
Punica can batch across different LoRA models, and base-
line systems can only batch requests for the same LoRA
models.

Figure 11 (a) and (b) show the results on the 7B model and
the 13B model, respectively. Punica consistently delivers
high throughput regardless of workloads. Punica achieves
1044 tok/s and 693 tok/s on the 7B and the 13B models,
respectively. Although most baselines can achieve relatively
high throughput in the Identical case, their performance
deteriorates when there are multiple LoRA models.

In the Distinct case, all baseline systems run with a batch
size of 1, and thus, the throughput is low. In the Uniform
and the Skewed cases, most batches for the baseline systems
have extremely small batch sizes (1–3), which explains the
low performance. Punica is able to batch different LoRA
models in one batch and, therefore, can run with a batch
size of 32 consistently.

With only one LoRA model, all systems can run with a
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Figure 11. Single GPU text generation comparison

batch size of 32. Thus, all except for the HuggingFace
Transformer can deliver high throughput. HuggingFace
Transformer’s low performance is due to its lack of critical
CUDA kernel optimizations, including FlashAttention (Dao
et al., 2022). In the Identical case, both vLLM and Punica
outperform other systems because the two systems’ Kv-
Cache layout allows continuous batching. In contrast, other
systems have to wait for the longest sequence in the batch
to finish. vLLM’s throughput is slightly higher than Punica
(at 1140 tok/s and 789 tok/s, respectively) because we run
vLLM backbone-only.
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Figure 12. 70B model text generation comparison.

Serving 70B models with tensor parallelism We run
the 70B model on Punica with Megatron’s tensor parallel
scheme (Shoeybi et al., 2019; Narayanan et al., 2021) on
8 GPUs in Testbed #2. We choose to replicate one side
of LoRA in tensor parallelism. For column-wise split, we
replicate A and split B column-wise, and vice versa. This
tensor parallel scheme for LoRA avoids extra communica-
tion while only replicating a small amount of storage and

computation. We compare Punica and vLLM. vLLM also
uses the same Megatron’s tensor parallel scheme.

Figure 12 shows similar trends as our results in serving 7B
and 13B models. In the presence of multiple LoRA models,
vLLM’s throughput is around 21 to 25 tok/s, whereas when
serving the backbone, vLLM can achieve 457 tok/s due to
the large batch size. For the Identical case, Punica and
vLLM achieve the same performance because their parallel
schemes are the same. However, Punica can consistently
deliver 441 to 446 tok/s throughput regardless of LoRA
popularity distribution, significantly outperforming vLLM
for serving multiple LoRA models.

7.3 Cluster deployment
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Figure 13. Cluster deployment.

We evaluate Punica on 16 GPUs in Testbed #2. The load
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varies as follows: In the macro view, the request rate of the
workload gradually increases and then gradually decreases.
In the micro view, gaps between request arrival times follow
an exponential distribution. LoRA model popularity follows
Zipf-1.5 distribution (same as our Skewed workload). The
duration of the experiment is one hour. The model size is
7B in this experiment.

Punica is able to consolidate GPU usage while delivering
high throughput. Figure 13’s upper panel shows the request
rate over time. The middle panel shows text generation
throughput in terms of tokens per second. The lower panel
shows the batch size of each GPU across time. GPUs usually
run with the maximum batch size when they are not idle
because our schedule algorithm prioritizes large batch sizes.
Occasionally, a GPU runs with a smaller batch size because
it runs out of KvCache space and migrates out a few requests
to other GPUs. When a GPU becomes idle (batch size = 0),
it is likely that it stays idle, which can then be released to
the cloud provider if necessary.

8 DISCUSSIONS AND FUTURE WORK

Support for different ranks. The current implementation
of SGMV assumes that all LoRA adapters have the same
rank. When different ranks are needed, one workaround
is to pad adapters to the highest rank. This workaround
should only incur a minor performance penalty, as depicted
in Figure 9 and Figure 10. We plan to add support for
different ranks to SGMV in the future. Adding the support
does not change our overall system design.

Support for other types of PEFT. Besides LoRA,
SGMV is applicable to other adapters that introduce low-
rank matrices, such as Adapters (Houlsby et al., 2019),
AdaLoRA (Zhang et al., 2023a), and DoRA (Liu et al.,
2024).

Support for quantization. We plan to extend SGMV to
support quantized adapter weights and activations.

Support for diffusion models. Diffusion models also use
LoRA heavily. SGMV is applicable to diffusion models as
well, because LoRA is used for dense projections.

9 RELATED WORK

LLM inference optimization. A series of recent work
has focused on optimizing LLM inference. Orca (Yu et al.,
2022) proposes batching transformer-based text generation
by splitting concatenated batch input at the self-attention
operation. vLLM (Kwon et al., 2023) further reduces the
memory fragmentation of KvCache by borrowing the idea
of virtual pages in operating systems. FlashAttention (Dao
et al., 2022) provides an optimized implementation of self-
attention operation by reducing data movement via block-

wise computation. Punica already integrates them. On
the other hand, FlexGen (Sheng et al., 2023) designed an
efficient swapping schedule to maximize throughput on a
single GPU while sacrificing latency. Speculative Decoding
(Leviathan et al., 2023; Miao et al., 2023; Cai et al., 2023)
increases the operational intensity of the decode stage by us-
ing a lightweight “draft” model to propose candidates for the
next k tokens and verifying these k tokens in parallel with
large models. Punica is orthogonal to these optimizations.

Multi-model inference serving A substantial body of
work has been proposed for serving ML models on a GPU
cluster. Clipper (Crankshaw et al., 2017) is one of the ear-
liest systems to optimize both throughput and latency in a
GPU cluster. It is followed up by a series of systems (Gu-
jarati et al., 2020). However, they are mainly designed to
serve smaller CNN models. One key difference is that
serving CNN models is stateless whereas LLM serving
needs to persist the KvCache. The state introduces an affin-
ity that asks for a different system design. For example,
Symphony (Chen et al., 2024) uses a non-work-conserving
scheduler but Punica runs batches on a GPU back-to-back
due to the KvCache affinity. Although Nexus (Shen et al.,
2019) supports prefix sharing of different models, they of-
fer limited support and optimization faced with LLMs and
fine-grained sharing patterns as we witnessed in LoRA.

PetS (Zhou et al., 2022) batches requests to differ-
ent adapters (e.g., Adapters (Houlsby et al., 2019),
MaskBert (Zhao et al., 2020), Diff-Pruning (Guo et al.,
2021), Bitfit (Zaken et al., 2022)) of a LLM on a single
GPU. It allows GPU memory sharing of the pre-trained
model for different downstream tasks, however, it does not
enable multiple different models to run concurrently.

Model and KvCache quantization/compression A sub-
stantial amount of work has been proposed to reduce the
memory footprint of model weights, activations and Kv-
Cache by quantization (Frantar et al., 2022; Xiao et al.,
2023a; Guo et al., 2023; Lin et al., 2023; Sheng et al.,
2023). Model quantization saves more headroom for Kv-
Cache, hence enabling Punica to serve requests of longer
sequences without migration. In addition, KvCache quan-
tization (Sheng et al., 2023) and compression (Liu et al.,
2023b;a; Zhang et al., 2023b; Xiao et al., 2023b) further
reduces the memory I/O of the KvCache, through which in-
ference latency can be reduced, as self-attention is bounded
by GPU memory bandwidth (Dao et al., 2022). QLoRA
(Dettmers et al., 2023) proposes to fine-tune LoRA by stor-
ing LoRA weights/gradients in high-precision formats such
as fp16 while keeping the original weight in quantized for-
mats to save memory footprint during fine-tuning. Quanti-
zation reduces self-attention latency, which makes the high
efficiency of Punica’s LoRA kernel even more important.
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10 CONCLUSION

Low-rank adaptation (LoRA) has become an important fine-
tuning method for adapting pre-trained models to specific
domains. We present Punica, a system to serve multiple
LoRA models in a shared GPU cluster. Punica’s design
is centered around a new CUDA kernel design that allows
batching of GPU operations for different LoRA models. For
each GPU, Punica only requires a single copy of the underly-
ing pre-trained model for the GPU to serve multiple, differ-
ent LoRA models, significantly improving GPU efficiency
in terms of both memory and computation. Additionally,
Punica’s scheduler consolidates multi-tenant LoRA serv-
ing workloads in a shared GPU cluster. With a fixed-sized
GPU cluster, our evaluations show that Punica achieves
12x higher LoRA model serving throughput compared to
state-of-the-art LLM serving systems while only adding
2ms latency per token.
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Deja vu: Contextual sparsity for efficient llms at inference
time. In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), International Con-
ference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pp. 22137–22176.
PMLR, 2023b. URL https://proceedings.mlr.
press/v202/liu23am.html.

Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul,
S., and Bossan, B. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Wong, R. Y. Y., Chen, Z., Arfeen, D., Abhyankar, R.,
and Jia, Z. Specinfer: Accelerating generative LLM serv-
ing with speculative inference and token tree verification.
CoRR, abs/2305.09781, 2023. doi: 10.48550/ARXIV.
2305.09781. URL https://doi.org/10.48550/
arXiv.2305.09781.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti,
P., Bernauer, J., Catanzaro, B., Phanishayee, A., and
Zaharia, M. Efficient large-scale language model train-
ing on gpu clusters using megatron-lm. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’21, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450384421. doi: 10.
1145/3458817.3476209. URL https://doi.org/
10.1145/3458817.3476209.

ShareGPT. ShareGPT: Share your wildest ChatGPT con-
versations with one click., 2023. URL https://
sharegpt.com/.

Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Phili-
pose, M., Krishnamurthy, A., and Sundaram, R. Nexus:
A gpu cluster engine for accelerating dnn-based video
analysis. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, SOSP ’19, pp.
322–337, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450368735. doi: 10.
1145/3341301.3359658. URL https://doi.org/
10.1145/3341301.3359658.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M.,
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