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ABSTRACT
Sequential location recommendation plays an important role in
many applications such as mobility prediction, route planning and
location-based advertisements. In spite of evolving from tensor
factorization to RNN-based neural networks, existing methods did
not make effective use of geographical information and suffered
from the sparsity issue. To this end, we propose a Geography-
aware sequential recommender based on the Self-Attention Net-
work (GeoSAN for short) for location recommendation. On the one
hand, we propose a new loss function based on importance sam-
pling for optimization, to address the sparsity issue by emphasizing
the use of informative negative samples. On the other hand, to make
better use of geographical information, GeoSAN represents the hi-
erarchical gridding of each GPS point with a self-attention based
geography encoder. Moreover, we put forward geography-aware
negative samplers to promote the informativeness of negative sam-
ples. We evaluate the proposed algorithm with three real-world
LBSN datasets, and show that GeoSAN outperforms the state-of-the-
art sequential location recommenders by 34.9%. The experimental
results further verify significant effectiveness of the new loss func-
tion, geography encoder, and geography-aware negative samplers.

CCS CONCEPTS
• Information systems → Collaborative filtering; Location
based services.

KEYWORDS
sequential recommendation, geography encoding, importance sam-
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1 INTRODUCTION
With the rapid development of information technology, it is much
easier for human mobility behaviors to digitize and share with
friends. Mobility behaviors can be used to understand and predict
human mobility [9, 33], facilitating individual daily life in dining,
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transportation, entertainment, and so on. However, individual mo-
bility is not always predictable [19, 28], due to data missing and
sparsity. As the task of predicting a personalized ranking of loca-
tions given individual mobility history, sequential location recom-
mendation plays an important role in improving the predictability
of mobility over unseen locations, by exploiting the wisdom of
the crowd. In addition to mobility prediction, sequential location
recommendation is also useful in many other applications ranging
from route planning to location-based advertisements.

The methods of sequential location recommendation has been
evolving from tensor factorization andmetric learning to RNN/CNN
based neural networks in recent years. For example, Factorizing Per-
sonalized Markov Chains (FPMC) [26] were extended to address the
sparsity issue of modeling personalized location transitions [3, 18].
Based on metric learning, Personalized Ranking Metric Embedding
(PRME) was proposed to model personalized location transition [8],
and further extended to incorporate geographical influence by mul-
tiplying travel distance with the estimated transition probability.
To capture long-term dependence, Recurrent Neural Networks such
as GRU and LSTM were extended to incorporate spatio-temporal
information [5, 13, 22, 34, 40] by embedding travel distance, travel
time and time of the week, or designing spatio-temporal gates for
controlling information flow.

Among these existing methods, two important challenges are
not well addressed. First, geographical information is still not effec-
tively utilized. It is well known that the GPS position of location
is important to describe physical proximity between locations and
individual mobility history usually exhibits the spatial clustering
phenomenon [16, 36]. Therefore, it is indispensable to encode the
exact GPS positions of locations. Second, these methods may suffer
from the sparsity issue. Note that users usually visit a small number
of distinct locations [27], and negatively-preferred locations are
mixed together with potentially positive ones in individual unvis-
ited locations. These methods use either the BPR loss [25] or the
binary cross-entropy loss for optimization by contrasting visited
locations with random samples from unvisited locations. However,
informativeness is different from sample to sample, so treating them
equally in these loss functions is far from optimal.

To this end, we propose a Geography-aware sequential recom-
mender based on the Self-Attention Network (GeoSAN for short)
for location recommendation. In GeoSAN, in addition to embedding
user, location and time, we also embed the exact GPS of the location
with a novel geography encoder to address the first challenge. To be
more specific, we first follow the tile map system to cut the world
map into tiles (i.e., grids) of the same size at different levels of de-
tail and use quadtree keys (quadkeys for short) for grid addressing.
Then, given the specific level of detail, the GPS point is mapped into
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a grid and represented with the quadkey of the grid1. A quadkey at
level l can be interpreted as a base-4 number of l digits. For example,
the Eiffel Tower (latitude=48.858093 and longitude=2.294694) is rep-
resented with the quadkey “12022001101200033” at the 17-th level
of detail. It is intuitive and straightforward to embed the quadkeys
directly, but spatial proximity between grids is still not encoded.
Note that each quadkey starts with the quadkey of its parent grid
and the quadkeys of nearby grids are similar to each other. There-
fore, we apply the self-attention network for encoding the n-gram
of quadkeys, such that nearby grids are similarly represented.

To address the sparsity challenge, we propose a weighted binary
cross-entropy loss based on importance sampling, so that informa-
tive negative samples are more weighted. Since the informative
samples can contribute more to the gradient, the magnitude of
gradient grows larger and the training course can be accelerated.
The loss function can be adaptive to any negative samplers and can
be optimized by any solvers. To make further use of geographical
information, we propose geography-aware negative samplers, such
that more informative negative locations are sampled with larger
probability, promoting the informativeness of negative samples.

The contributions can be summarized as follows:
• We propose Geography-aware sequential recommender based
on the Self-Attention Network (GeoSAN) for location recommen-
dation, to capture long-term sequential dependence and to make
fully effective use of geographical information.

• We propose the self-attention based geography encoder to rep-
resent the exact GPS positions of locations, such that spatial
proximity between nearby locations can be captured. In this way,
the spatial clustering phenomenon and distance-aware location
transition can be implicitly modeled.

• We propose a new loss function based on importance sampling
for optimizing GeoSAN, such that more informative negative
samples are assigned larger weights. Geography-aware negative
samplers are also proposed as the proposal distribution, such that
the informativeness of negative samples is promoted.

• We evaluate GeoSAN with three real-world LBSN datasets. The
results not only show that GeoSAN remarkably outperforms the
state-of-the-art location sequential recommenders, but also show
the advantage of the new loss function, and the effectiveness of
two approaches of incorporating geographical information.

2 RELATEDWORK
We first review recent literature of sequential location recommen-
dation and then investigate recent advance of sequential recom-
mendation, but concentrating on self-attention based methods.

2.1 Sequential Location Recommendation
Sequential location recommendation was modeled by pairwise in-
teraction based tensor factorization [3, 18], personalized metric
embedding [8], word embedding techniques [7], recurrent neu-
ral networks (with attention) [5, 13, 22, 34, 40]. Geographical in-
formation was incorporated by embedding travel distance [5, 13],
distance-specific location transition [22], geography-aware uniform
sampler [3] or designing a geography-aware gate in RNN [40] to re-
duce the effect of mobility behaviors at distant locations. Temporal
1https://en.wikipedia.org/wiki/Tiled_web_map

information was also incorporated by embedding time interval [13],
embedding time of week [13, 34], and controlling information flow
with interval-aware gating [40]. These recommendation models
are optimized with the BPR loss [3, 5, 8, 15, 18, 22], the cross en-
tropy loss [13, 34, 40], and hierarchical softmax [7]. The differences
of the proposed algorithm from these existing works lie in the
methods of geographical modeling, the loss function and the use of
self-attention network for capturing long-range dependence.

2.2 Geographical Modeling in Non-Sequential
Location Recommendation

In the LBSN datasets, the spatial clustering phenomenon was ob-
served and explained by the Tobler’s first law of geography [36]. The
spatial clustering phenomenon was then characterized by the dis-
tance between individual visited locations following the power-law
distribution. In order to avoid the power-law distribution assump-
tion, kernel density estimation was used to estimate the distribution
of the distance between pairs of locations [37]. Since modeling the
distance distribution may ignore the multi-center characteristics
of individual visited locations [2], geo-clustering techniques were
developed to cluster individual visited locations [2, 21]. Because it
is difficult to estimate the number of clusters, 2-D KDE was adopted
for modeling the spatial clustering phenomenon [14, 16, 17, 38].

These methods for geographical modeling were integrated with
location recommendation models in an ad-hoc way. Different from
them, we propose the self-attention based geography encoder,
which can be seamlessly integrated with the self-attention network
for modeling the mobility history.

2.3 Sequential Item Recommendation with
Self-Attention

Due to great business value, sequential item recommendation re-
ceives lots of attention recently and many algorithms have been
proposed. Due to space limitations, we only discuss self-attention
based sequential recommendation. For more sequential recommen-
dation algorithms, please refer to the survey [24, 31].

Due to full parallelism and the capacity of capturing long-range
dependence, the self-attention network [30] has been widely used
in sequence modeling, and achieved the state-of-the-art perfor-
mance in many NLP tasks. In recent two years, it was also used in
sequential recommendation by optimizing the binary cross-entropy
loss [11] based on inner product preference and triplet margin
loss [39] based on Euclidean distance preference. The experimen-
tal results show that it significantly improved the performance
of recommendation compared to RNN. Since time intervals be-
tween consecutive interactions may be different from each other,
the self-attention network, which was originally designed for sym-
bol sequences, does not use them for modeling sequential depen-
dence. As such, the time interval aware self-attention network was
proposed [12] by refining attention weights and values with time
interval. Instead of the causality mask [12], a strategy (the Cloze
objective) used for training BERT [6] was borrowed to avoid infor-
mation leakage and improve recommendation performance [29].

The differences of GeoSAN from them lie in the geography en-
coder and the new loss function. It is possible to combine them to
achieve further improvements in recommendation accuracy.
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Figure 1: Framework of the proposed GeoSAN and the geography encoder

3 GEOGRAPHY-AWARE SEQUENTIAL
RECOMMENDER

Sequential location recommender takes as input a user’s mobility
trajectory Su = ru1 → ru2 → · · · → run , where rui = (u, ti , li ,pi )
indicates a behavior that user u visited location li with the exact
position pi = (latitude = αi , longitude = βi ) at time ti . Given
the input trajectory, sequential location recommender predicts the
next location li+1 with the GPS position pi+1. During the training
process, as shown in Figure 1, we consider the trajectory except the
last ru1 → ru2 → · · · → run−1 as input sequence and the trajectory
except the first ru2 → ru3 → · · · → run as output sequence. The
proposed geography-aware sequential recommender is illustrated
in Figure 1. Each part will be elaborated in the following sections.

3.1 Geography-aware Self-Attention Network
3.1.1 Embedding. The input sequence is first transformed into a
fixed-length sequence. Given the maximum lengthm, if the input
sequence length is greater than m, we split it from right to left
into multiple sub-sequences. When the input sequence length is
less thanm, we repeatedly add a “padding” behavior to the right
until the length grows to m. We then embed user, hour of week
and location of each behavior, and encode the exact position with a
novel geographical encoder, whose design will be elaborated later.
These vectors are concatenated, forming the representation matrix
E ∈ Rm×d of the sequence. For the padding behaviors, we use a
constant zero vector for encoding. Since the self-attention encoder
can not capture relative positions in the sequence like RNN, we
follow [11] to add positional embedding P into E, i.e., E = E + P .

3.1.2 Self-Attention Encoder. To capture long-range dependence,
we apply the self-attention encoder [30] for transforming the rep-
resentation matrix E of the sequence. The self-attention encoder
stacks multiple self-attention blocks, each of which consists of a
self-attention layer and a point-wise feed-forward network (FFN).
The self-attention layer takes the representation matrix E of the
sequence as input and feeds them into an attentionmodule after con-
verting it through three distinct matricesWQ ,W K ,WV ∈ Rd×d ,

S = SA(E) = Attention(EWQ , EW K , EWV ) (1)

where the attention module used in the self-attention layer is the
scaled dot-product attention, i.e.,

Attention(Q,K,V ) = softmax(QKT
√
d

)V (2)

Note that the recommendation of the n + 1-th location depends on
not the future behaviors but only the preceding n behaviors. We
achieve the causality constraint by a square mask, which is filled
−∞ in the upper triangle and 0 in other entries.

The FFN, being identically applied on each behavior represen-
tation, is used to endow the self-attention with nonlinearity and
encode the interactions between dimensions. The FNN is a two-
layer feed-forward network, whose output at step i is

F i = FFN(Si ) = max(0, SiW 1 + b1)W 2 + b2 (3)

whereW 1 ∈ Rd×dh ,W 2 ∈ Rdh×d , s.t. dh > d .
When stacking multiple self-attention blocks, residual connec-

tion and layer normalization are applied in FFN and the self-attention
layer for stabilizing and speeding up the training process [30].
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3.1.3 Target-aware Attention Decoder. The output of the l self-
attention blocks is denoted by F (l )i . Most existing self-attention
based recommenders directly feed these outputs into the matching
module, whichmay be suboptimal according to recent studies in [20,
41]. To improve the representation of the input sequence with
respect to target locations, we introduce the target-aware attention
decoder in GeoSAN as follows:

A = decoder(F (l ) |T ) = Attention(T , F (l )W , F (l )) (4)
where T ∈ Rn×dT is the representation matrix of the output se-
quence, obtained by concatenating embedding vectors of candidate
locations and representation vectors of their geographical informa-
tion.W is a matrix for mapping queries and keys into the same
latent space. This can also be viewed as substituting the scaled
dot-product attention with bilinear attention for computing atten-
tion weights between queries and keys. Note that the causality
constraint is also required, achieved by the aforementioned mask.

3.1.4 Matching. Given the representationAi of the input sequence
at step i , we can compute preference score for each candidate loca-
tion with any matching function f , like deep neural network [41],
inner product [11] when representations of history and candidate
are of the same dimension, and bilinear when they are of different
dimensions. In particular, the preference score is written as follows:

yi , j = f (Ai ,T j ), (5)
whereT j is the representation vector of candidate location j. Here
we have to emphasize that the representation vector of each can-
didate location should consider the embedding of both location
and its geographical information at the same time. Otherwise, geo-
graphical information can not take effect according to our empirical
observation. Similar to [11], the embedding matrices and the ge-
ography encoder are shared between output sequences and input
sequences.

3.2 Geography Encoder
The exact position of each location is usually described by latitude
and longitude. Though they are continuous, it may not be suitable
to feed them into the learning system directly. The reasons are two-
fold. First, latitude and longitude can describe the whole earth’s
surface, but locations that human can access, are usually located in a
very small region of the earth’s surface. In other words, the learning
system trained with human mobility suffers from the sparsity issue.
Second, latitude and longitude strongly interact with each other
since it is only possible to identify a location by making joint use of
them. It may be difficult for the learning system to learn the strong
interaction between them.

To this end, we propose the geography encoder, which embeds
the exact position of location by first mapping latitude and longitude
into a grid, and then encoding the unique id (quadkey) of the grid
with a self-attention network.

3.2.1 Map Gridding and GPS Mapping. Before introducing how
to map GPS points, we first divide the world map hierarchically
into grids by following the Tile Map System. The tile map system
has been widely used for quick navigation and interactive display
in web map services, such as Google Maps and Bing Maps. In the
system, the spherical form of the Mercator projection is used to
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Figure 2: Hierarchical map gridding based on the Tile Map
System, and themapping of a location (the Eiffel Tower) into
grids at level 16-18, whose quadkeys are annotated.

project the entire world into a flat plane. The scale of the plane
starts with 512x512 pixels and grows by a factor of 2 with the
increase of levels. To improve the performance of map retrieval
and display, the plane is cut into tiles (i.e. grids) of 256 x 256 pixels
each. In this way, when the number of levels increases by one, each
grid is divided into four sub-grids of the same size. The hierarchical
gridding of a local plane around the Eiffel Tower (latitude=48.858093
and longitude=2.294694) is illustrated in Figure 2.

To map GPS points into grids, the latitude α and longitude β ,
assumed to be on the WGS (World Geodetic System) 84 datum, are
converted into a Cartesian coordinate in the spherical-projected
plane2 given a specified level l , which is calculated as follow:.

x =
β + 180
360 × 256 × 2l

y =

(
1
2 −

1
4π log 1 + sin(α × π/180)

1 − sin(α × π/180)

)
× 256 × 2l

(6)

The map from a Cartesian coordinate (x,y) to a grid is simply
achieved by dividing them by 256. Because of grid division like
quadtree, each grid can be identified with a quadtree key (quadkey
for short), which can be interpreted as a base-4 number and whose
length equals the level of detail. As illustrated in Figure 2, at the
17-th level of detail, the Eiffel Tower is mapped into a grid with
the quadkey “12022001101200033”. As such, the GPS mapping is
achieved by making joint use of latitude and longitude, addressing
the issue of the strong interaction between them. Different locations
in a grid share the same quadkey as the grid, and grids without
locations are directly ignored when embedding, so the sparsity
issue is addressed to some extent.

3.2.2 Encoding Quadkeys. By considering the quadkeys of grids
at the last level as a category variable, it is intuitive and straight-
forward to embed them with an embedding matrix. This method
suffers from two issues. First, it is difficult to set an appropriate
level of detail to stop map partition. The growing number of levels
lead to the exponential increase number of grids, which is likely
to better distinguish locations, but suffers from the sparsity issue.
Second, the physical proximity between nearby grids is not mod-
eled. In particular, nearby grids may have similar quadkeys. For
2https://en.wikipedia.org/wiki/Map_projection
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example, in the leftmost of Figure 2, the quadkeys of the four grids
share the same prefix “120220011012000”. In other words, proximity
relationships between nearby grids are partially hidden in their
quadkeys.

To this end, we consider quadkeys as a character sequence, whose
each character is in the set {“0”, “1”, “2”, “3”}, and then apply the self-
attention network for encoding the character sequence of the quad-
key. However, the cardinality of the character set is small, and the
meaning of characters at different positions may be different from
each other, so such a character-level model can not fully encode
the proximity between nearby grids. Therefore, we transform each
quadkey into the sequence of n-grams first, such that the vocabulary
size increases from 4 to 4n . Taking the first 8 digits – “12022001”
of the aforementioned quadkey as an example, the transformed
sequence of trigrams is 120 → 202 → 022 → 220 → 200 → 001.
After embedding the sequence of n-grams, we apply a stacked
self-attention network for capturing sequential dependence, and
then aggregate the sequence of n-gram representations via average
pooling. Note that when the hyperparameter n equals the number
of digits in the quadkeys, it would degenerate to the vanilla em-
bedding. Hence, n controls the model capacity of the geography
encoder, whose sensitivity will be analyzed in the experiments.

3.3 Loss Function with Importance Sampling
Recall that given the sequence Su , the preference score at step
i for a candidate location j is yi , j . It is easy to understand that
optimizing the cross-entropy loss [13, 34, 40] is not efficient when
the number of candidate locations grows large. Existing sequential
recommenders based on self-attention usually used the binary cross-
entropy loss [11, 12], which is written as follows:

−
∑
Su ∈S

n∑
i=1

©«logσ (yi ,oi ) +
∑
k<Lu

log(1 − σ (yi ,k ))
ª®¬ , (7)

where S is a training set of mobility trajectories, oi is the target loca-
tion at step i and Lu is a set of visited locations by user u. Here we
have already ignored the padding in the output sequence. In order
to efficiently optimize the loss, one negative item is sampled from
unvisited locations at each step based on the uniform distribution.

Since only one negative item is sampled from unvisited loca-
tions, the binary cross-entropy loss can not make fully effective
use of the large number of unvisited locations. In particular, after
the loss is optimized for several epochs, positive samples may be
easily distinguished from randomly sampled negative locations, so
that the gradient of the loss is of small magnitude and the training
course is slow. In other words, because informative negative sam-
ples are missing, the binary cross-entropy loss is hard to reduce. It
is intuitive that unvisited locations with large preference scoresyi , j
can contribute more to gradient, so they are more informative and
should be sampled with high probability. However, it is infeasible to
consider top-k unvisited location with the largest preference scores
as negative due to the false negative problem. It is also infeasible
to directly sample negative locations with probability in propor-
tion to the preference scores due to the efficiency issue. To this
end, we propose to weight unvisited locations with the probability
being negative, such that even with the uniform sampler, more
informative locations can be more emphasized. In particular, the

loss function is reformulated as follows:

−
∑
Su ∈S

n∑
i=1

©«logσ (yi ,oi ) +
∑
k<Lu

P(k |i) log(1 − σ (yi ,k ))
ª®¬ , (8)

where P(k |i) is the probability of location k being negative given
the mobility trajectory ru1 → r2 → · · · → rui . We suggest to model
the probability as follows

P(k |i) =
exp (ri ,k/T )∑

k ′<Lu exp (ri ,k ′/T )
(9)

where T is a temperature parameter, controlling the divergence of
the probability distribution from the uniform distribution. When T
approaches ∞, it is equivalent to the uniform distribution.

However, this loss function still suffers from low efficiency of
computing normalization in the probability. To improve the effi-
ciency, by considering

∑
k<Lu P(k |i) log(1 − σ (yi ,k )) as computing

expectation with respect to P(k |i), we propose to approximate the
expectation with importance sampling. Suppose the proposal dis-
tribution is Q(k |i), from which it is easy to sample, and denote
by Q̃(k |i) the unnormalized probability of Q(k |i). The loss is then
approximated as follows according to [1] (also see Appendix A.3)

−
∑
Su ∈S

n∑
i=1

(
logσ (yi ,oi ) +

K∑
k=1

wk log
(
1 − σ (yi ,k )

))
, (10)

where wk =
exp

(
ri ,k /T−ln Q̃ (k |i)

)
∑K
k′=1 exp

(
ri ,k′/T−ln Q̃ (k ′ |i)

) is the weight of the k-th

sample. Therefore, among K locations, the locations with larger
preference scores are assigned larger weight. When the proposal
distribution is deviated from P(k |i), the sample weight can compen-
sate divergence between P and Q to some extent.

Note that only the unnormalized probability is used, being con-
venient for probability distribution over a subset of the whole loca-
tions L. WhenQ(k |i) is a uniform distribution over L\Lu , ln Q̃(k |i) ∝
− ln |L| and thus wk =

exp (ri ,k /T )∑K
k′=1 exp (ri ,k′/T )

. Q(k |i) can be approxi-
mated with the uniform distribution over L, due to extremely low
probability of sampling locations in Lu as negative and the compa-
rable accuracy of recommendation. When designing other proposal
samplers, we also consider the distribution over L instead of L\Lu
for simplification, which is also widely used in the field of NLP [23].

3.4 Geography-aware Negative Sampler
In the sequential location recommender, geographical information
can also be effective to distinguish negative from potentially pos-
itive in unvisited locations. For example, when he/she visits the
target location oi at time ti , the unvisited locations around oi may
be more likely to be negative. However, it may be computationally
infeasible to directly sample locations based on GPS distance, such
that closer locations are sampled with larger probability. Therefore,
in the geography-aware negative samplers, we suggest to first re-
trieve K nearest locations to the target location and then randomly
draw negative samples from these K candidates. We consider neg-
ative sampling based on the uniform distribution or a popularity-
based distribution. In the popularity-based proposal, according to
our empirical findings, it is better to use Q̃(k |i) ∝ ln(ck + 1), where
ck denotes occurring frequency in the mobility history.
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4 EXPERIMENTS
4.1 Datasets
We use three publicly available real-world Location-Based Social
Network datasets to evaluate our method: Gowalla, Brightkite [4],
and Foursquare [35]. We remove users with fewer than 20 check-
ins and locations which have been visited fewer than 10 times.
Table 1 summarizes the statistics of the three datasets. For the
check-in sequence of each user, we take the last check-in record
on a previously unvisited location for evaluation, and all check-ins
prior to that for training. The maximum sequence length is set to
100. Longer sequences will be divided into non-overlapping sub-
sequences of length 100 from right to left, and the most recent 100
check-ins will be used in the evaluation.

Table 1: Dataset statistics.

Gowalla Brightkite Foursquare
#users 31,708 5,247 12,695
#locations 131,329 48,181 37,344
#check-ins 2,963,373 1,699,579 1,941,959

4.2 Baselines
To show the effectiveness of our proposed method, we compare it
with the following baselines:
• FPMC-LR [3] uses tensor factorization to model personalized
location transitions and incorporates a localized region constraint
in learning the transition tensor.

• PRME-G [8] utilizes metric learning to project users and locations
into the sequential transition space and the user preference space
to learn user-specific transition patterns. Geographical influence
is incorporated by multiplying a travel-distance based weight.

• GRU is a simple baseline based on GRU4Rec [10], which adapts
our framework by adopting a single-layer GRU for modeling
sequences and the BPR loss [25] for optimization. We have also
tried the popularity-based negative sampling in [10], but it leads
to significant performance drop.

• SASRec [11] is a state-of-the-art sequential recommendation
method based on self-attention mechanisms, but it only uses the
most recent sequence of each user for training.

• STGN [40] enhances LSTM networks by introducing spatio-
temporal gates to capture the spatio-temporal relationships be-
tween successive check-ins.

4.3 Metrics
The performance of recommendation is assessed by how well the
target locations in the test set are ranked. We adopt two widely-
used metrics of ranking evaluation: Hit Rate and NDCG [32]. Hit
Rate at a cutoff k , denoted as HR@k , counts the fraction of times
that the target location is among the top k . NDCG at a cutoff k ,
denoted as NDCG@k , rewards method that ranks positive items in
the first few positions of the top-k ranking list. We report the two
metrics at k = 5 and k = 10 in our experiments.

We consider a practical scenario that the recommendations are
made based on the user’s current GPS coordinates (consider howwe

get recommendations on where to go next when we open the map
app on our mobile phones). For the sake of efficient evaluation, we
first retrieve the nearest 500 previously-unvisited locations to the
target location as negative candidates. In order to make the negative
candidates more difficult to differentiate from the target ones, we
train a Weighted Regularized Matrix Factorization (WRMF) model
on the user-location interaction matrix by further dividing the
training set into an 80% one for WRMF training, and a remaining
20% one for WRMF testing. Then we sort the 500 negative location
candidates according to the scores predicted by the WRMF model.
The top 100 locations are selected as the negative locations to
rank with the target location. Hit Rate and NDCG can then be
computed based on the ranking of these 101 locations. In addition
to this recommendation scenario, we conduct evaluation in another
scenario – next location recommendation, where each user’s next
physical position is unknown, and the negative samples have to
be drawn from the vicinity of the immediately preceding check-in
location. The details are discussed in the Appendix A.1.

4.4 Settings
We set the dimension of location embedding to 50 for all methods,
the other parameters of the baselines to the default values. In our
GeoSAN model, we use 6-gram tokens to represent quadkeys at the
17-th level of detail. We train our model using the Adam optimizer
with a learning rate of 0.001 and set the dropout ratio to 0.5. The
number of training epochs is set to 50 for Gowalla and Foursquare,
and 20 for Brightkite. We use two layers of self-attention modules
for both the check-in sequence encoder and the geography en-
coder, and set the temperature T in our new loss function to 1.0 for
Gowalla and Foursquare, and 100.0 for Brightkite. For each location
in the dataset, we retrieve its nearest K=2000 locations for the kNN-
uniform negative sampler to sample from. We set the number of
negative samples for training to 5 for Gowalla and Foursquare, and
9 for the Brightkite dataset. Our model is implemented in PyTorch
and available at github3.

4.5 Comparison with Baselines
The results are summarized in Table 2. We observe that our pro-
posed model consistently outperforms all compared baselines on
all three datasets. Our proposed method archives up to 43.0% and
50.5% improvements over the best-performing baseline in terms
of HR@5 and NDCG@5. SASRec is a strong baseline with decent
performance on all three datasets, validating the effectiveness of
the self-attention architecture. Interestingly, SASRec can be further
improved when being adapted to our framework, i.e., dividing long
sequences into multiple sub-sequences of length 100, instead of
only using the most recent sequence of length 100. This also ex-
plains the good performance of GRU, which adapts our framework
by simply adopting GRU and the BPR loss. Thanks to geographical
modeling and ranking evaluation based on nearby locations of the
target location, PRME-G even shows higher accuracy than GRU
and SASRec. Though STGN also incorporates geographical infor-
mation by designing spatial-aware gates, STGN performs poor in
all three datasets. The main reason may lie in insufficient modeling
of geographical information.
3https://github.com/libertyeagle/GeoSAN
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Table 2: Comparison with baselines

Gowalla Brightkite Foursquare
HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

FPMC-LR 0.1486 0.1061 0.2202 0.1291 0.1427 0.1021 0.2203 0.1270 0.2191 0.1516 0.3150 0.1825
PRME-G 0.4008 0.3148 0.5029 0.3477 0.3678 0.2680 0.4904 0.3075 0.2615 0.1870 0.3607 0.2190
GRU 0.3815 0.2935 0.4883 0.3279 0.3528 0.2662 0.4675 0.3033 0.2838 0.2007 0.3900 0.2350
STGN 0.2299 0.1636 0.3311 0.1962 0.1997 0.1420 0.3051 0.1757 0.1979 0.1331 0.2905 0.1629
SASRec 0.3814 0.2926 0.4930 0.3286 0.3333 0.2514 0.4446 0.2874 0.2929 0.2081 0.4014 0.2431
GeoSAN 0.4951 0.3898 0.6028 0.4245 0.5258 0.4034 0.6425 0.4409 0.3735 0.2714 0.4867 0.3080

4.6 Ablation Study
To analysis the effectiveness of the various components in our
method, we conduct an ablation study. Our base model (denoted
as Original) does not use user embedding, time embedding, and
target-aware attention decoder. We consider the following variants
of our model:
• I. US (Uniform Sampler): We use the uniform negative sampler
over all locations, instead of the kNN-uniform negative sampler.

• II. BCE (Binary Cross-Entropy) Loss: We use the binary cross-
entropy loss, without assigning weights to negative samples.

• III. Remove GE (Geography Encoder): We remove the geography
encoder and only use location embedding for representation.

• IV. Remove PE (Positional Embedding) in GE: We remove positional
embedding used in the geography encoder, which injects relative
position information of each n-gram token within a quadkey.

• V. Add UE (User Embedding): We add a user embedding into the
check-in sequence encoder by concatenating user embedding
with location embedding and geographical representation from
the geography encoder. A linear layer is then used for transfor-
mation to match the dimension of candidate representation.

• VI. Add TE (Time Embedding): We add a time embedding in a
similar way to V. The timestamp of each check-in record is first
mapped to a one-hour interval within a week (i.e., there are
24 × 7 = 168 time intervals) and then fed to an embedding layer.

• VII. Add TAAD (Target-Aware Attention Decoder): We add the
target-aware attention decoder in this variant. We add a residual
connection between the output of the sequence encoder and the
output of the decoder, followed by layer normalization.
The results are summarized in Table 3. From this table, we can

have the following findings:
• Finding 1: kNN-uniform sampler dramatically boosts the perfor-
mance by drawing relatively “hard” negative samples. We can see
that using kNN-uniform sampler instead of the global uniform
sampler leads to an improvement of 6.8%, 3.2%, 7.0% on the three
datasets, with respect to NDCG@5. kNN-uniform sampler only
samples from unvisited locations in the vicinity of the target
location. The “localized” negative locations are more difficult to
distinguish from the target location than the negative samples
generated by the global sampler. The global uniform sampler
has a high probability of generating locations far away from the
user’s current position, which the user is more unlikely to visit
next (e.g., the sampler generates a location in China for a user
living in Australia). Compared to the “easy” negative samples, the
“hard” negative samples are more likely to improve the discrimi-
nating ability of the model. Besides, the kNN-uniform sampler is

consistent with the evaluation setting by using nearby locations
of the target location for ranking.

• Finding 2: The proposed new loss function proves to be helpful.
Compared to the unweighted binary cross-entropy loss, using
weighted loss improves the performance by 2.3%, 2.1% and 5.2%
on the three datasets in terms of NDCG@5. This is because the
weighted loss function pays more attention to the generated
samples with the higher negative probability.

• Finding 3: Incorporating the geographical information by the geog-
raphy encoder dramatically improves the accuracy of recommen-
dation. The improvements are 12.0%, 24.5%, 4.3% on the three
datasets in terms of NDCG@5. This implies that the spatial rela-
tions between locations are of vital use, andmust be well modeled
in order to make precise recommendation. We find that the geog-
raphy encoder works especially well on Gowalla and Brightkite.
This is because they contain worldwide data while the Foursquare
dataset only focuses on a single region. The comparison with the
variant IV indicates that there is no significant effect in adding
positional information in geography encoder.

• Finding 4: Adding user embedding or time embedding does not
lead to performance improvement. This may contribute to the mis-
match between the check-in embedding space and the candidate
location embedding space. In these two variants (V, VI), the added
embedding is first concatenated with the location embedding and
the geography encoding, and then goes through a linear layer.
This may lead to a deviation from the candidate embedding space
(location embedding ⊕ geography encoding). We have also tried
to implement this linear projection on the output of the sequence
encoder (late-fusion approach), but this does also not lead to
improvement of recommendation accuracy.

• Finding 5: Using a target-aware attention decoder is helpful in
certain circumstances. Adding a decoder to attend to historical
check-ins relevant to the target location leads to improvement of
recommendation accuracy on the Foursquare dataset, but leads
to a slight performance decrease on Gowalla and Brightkite.

4.7 Performance w.r.t. Negative Sampling and
Loss Function

4.7.1 Settings. We investigate the effect of different combinations
of negative samplers and weighted loss (our new loss function) /
unweighted loss (the vanilla binary cross-entropy loss). Besides the
uniform sampler and the kNN-uniform sampler, we also consider a
kNN-popularity sampler, which samples from the target location’s
k-nearest neighbors according to location popularity. For each com-
bination of the negative sampler and the loss function, we vary the

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2015



Table 3: Ablation analysis. Performance better than the original model is boldfaced.

Gowalla Brightkite Foursquare
HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Original 0.4951 0.3898 0.6028 0.4245 0.5258 0.4034 0.6425 0.4409 0.3735 0.2714 0.4867 0.3080
I. US 0.4654 0.3650 0.5743 0.4001 0.4988 0.3908 0.6181 0.4295 0.3537 0.2537 0.4712 0.2917
II. BCE Loss 0.4861 0.3812 0.6010 0.4184 0.5091 0.3951 0.6312 0.4346 0.3569 0.2580 0.4738 0.2958
III. -GE 0.4472 0.3481 0.5555 0.3830 0.4197 0.3240 0.5256 0.3581 0.3572 0.2602 0.4735 0.2977
IV. -PE 0.4791 0.3782 0.5919 0.4146 0.5146 0.4030 0.6402 0.4435 0.3774 0.2750 0.4904 0.3115
V. +UE 0.4496 0.3521 0.5618 0.3884 0.4967 0.3857 0.6101 0.4223 0.3416 0.2454 0.4573 0.2826
VI. +TE 0.4794 0.3784 0.5899 0.4140 0.5045 0.3911 0.6261 0.4304 0.3631 0.2646 0.4789 0.3020
VII. +TAAD 0.4910 0.3871 0.5987 0.4219 0.4925 0.3821 0.6143 0.4214 0.3837 0.2788 0.5013 0.3169
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Figure 3: The impact of using different negative samplers,
number of negative samples and loss functions.

number of negative samples from 1 to 11 with a step 2. The results
on the Gowalla and Foursquare dataset are shown in Figure 3.

4.7.2 Findings. First, the models trained with the weighted loss con-
sistently outperform the ones trained with the unweighted loss. When
using the weighted loss, the model trained with the uniform sam-
pler improves a lot as the number of negative samples grows, while
there is no notable variation in performance when using the un-
weighted loss. Second, when using the kNN-based sampler, only
a small number of negative samples could enable remarkable per-
formance improvements. This further verifies the effectiveness of
sampling from nearby locations, and consistent with the next find-
ing, the models trained with the kNN-based sampler are consistently
better than the ones trained with the uniform sampler. We initially
believe that the kNN-popularity sampler would further leads to
improvement, but it takes little effect according to Figure 2. We use
the uniform sampler and the popularity sampler to draw locations
from the 500 negative evaluation candidates on Gowalla. The prob-
ability that the samples from the popularity sampler falls into the
final 100 locations given by WRMF is very close to that from the
uniform sampler, indicating the popularity sampler can not capture
the behaviors of WRMF much more than the uniform sampler.

4.8 Sensitivity w.r.t. Geography Encoding
Dimension

4.8.1 Settings. We vary the dimension used in the geography en-
coder from 10 to 60 with a step 10. Figure 4 shows the results.

4.8.2 Findings. We find that the performance gets much worse
when using a small geography encoding dimension, which fails to
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Figure 4: The impact of geography encoding dimension

capture the intricate geographical relations among different loca-
tions. A medium embedding size of 50 leads to peak recommenda-
tion accuracy on both datasets, which can adequately express the
intrinsic geographical meaning of each n-gram token in the quad-
keys. Further increasing the embedding dimension instead hurts
the recommendation accuracy, as the number of possible n-gram
tokens is limited. Specifically, we use 6-gram in our experiment,
which leads to a vocabulary of size 46 = 4096.
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Figure 5: The impact of N-grams

4.9 Sensitivity w.r.t. N-gram
4.9.1 Settings. Wevary then-grams used in the geography encoder
from n = 1 to n = 8. The results are shown in Figure 5.

4.9.2 Findings. A small n results in a limited cardinality of the
vocabulary set and limited representation power of tokens, result-
ing in poor recommendation performance. The performance will
gradually reach a stable peak point with the increase of n. A 4-gram
vocabulary, which includes 44 = 256 possible tokens, makes the
model capable enough to capture the hidden geographical informa-
tion in quadkeys.
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5 CONCLUSIONS
In this paper, we propose a geography-aware self-attentive sequen-
tial location recommender. In this recommender, we put forward a
new loss function based on importance sampling, such that informa-
tive negative samples are better used, and design a new geography
encoder to incorporate geographical information, such that the
spatial clustering phenomenon and distance-aware location transi-
tion can be implicitly captured. We also develop geography-aware
negative samplers to improve the informativeness of sampled neg-
ative locations. We then evaluate the proposed algorithm with
three real-world datasets. The experimental results show that the
proposed algorithm outperforms the state-of-the-art sequential lo-
cation recommender by 34.9% on average. Through ablation study
and sensitivity analysis, we also show the significant effect of the
new loss, the new geography encoder, and the geography-aware
negative samplers at improving recommendation performance. Fu-
ture work can includes the pretraining of the geography encoder
and the designing of more informative negative samplers.
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Table 4: Comparison with baselines when users’ next physical positions are unknown.

Gowalla Brightkite Foursquare
HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

FPMC-LR 0.1462 0.1042 0.2169 0.1270 0.1500 0.1059 0.2293 0.1312 0.2177 0.1506 0.3111 0.1808
PRME-G 0.3126 0.2476 0.3899 0.2726 0.1481 0.0984 0.2239 0.1229 0.1223 0.0869 0.1738 0.1035
GRU 0.3459 0.2638 0.4473 0.2965 0.3394 0.2554 0.4420 0.2884 0.1920 0.1318 0.2784 0.1597
STGN 0.2438 0.1782 0.3390 0.2089 0.1955 0.1344 0.2973 0.1670 0.2012 0.1443 0.2886 0.1725
SASRec 0.3426 0.2591 0.4421 0.2912 0.3139 0.2279 0.4231 0.2631 0.1922 0.1329 0.2830 0.1620
GeoSAN 0.4574 0.3571 0.5630 0.3911 0.4479 0.3488 0.5657 0.3868 0.2967 0.2107 0.3981 0.2433

A APPENDIX
A.1 Another Evaluation Scheme
A.1.1 Settings. We consider another evaluation settingwhen users’
next physical positions are unknown. In this case, we generate
negative ranking samples based on users’ last check-in locations.
For each user, we first retrieve the 500 nearest locations to his/her
last check-in location and then select the top 100 locations according
to the scores predicted by the WRMF model. These 100 locations
are considered as negative samples to rank with the target location,
just like what we do when users’ current positions are known. The
results are reported in Table 4.

A.1.2 Findings. We see that the proposed model still outperforms
all competing baselines on all three datasets in this particular setting.
Concretely, the improvements compared to the best-performing
baseline are 35.4%, 37.9%, 39.9% in terms of NDCG@5 on the dataset
of Gowalla, Brightkite and Foursquare, respectively. This further
validates the effectiveness of the proposed algorithm. The overall
recommendation performance of all algorithms is relatively smaller
than the other setting, and PRME-G degrades more than other
algorithms in this setting, as it may be inaccurate to consider a
user’s last check-in location as his/her next position.

A.2 Effectiveness of the Geography Encoder in
Capturing Geographical Relations

We propose the geography encoder to embed quadkeys using self-
attention mechanism, and the geographical relations between dif-
ferent locations can then be implicitly captured in its latent space.
We further validate whether quadkey representations learned by
the geography encoder indeed imply certain underlying geographi-
cal relations. The underlying intuition is that Euclidean distance
between quadkey representations of two distant locations should
be larger than close ones.

A.2.1 Settings. We conduct an empirical analysis on the Foursquare
dataset to validate our above intuition. We first find out the location
(denoted as L) which has the most neighbors within a 50km radius.
The neighboring locations are divided into 5 groups according to
the distance from the location L, each of which corresponds to
one of these 5 intervals: (0km, 10km], (10km, 20km], (20km 30km],
(30km, 40km], (40km, 50km]. We then sample 30 locations from
locations of each group, and compute Euclidean distances between
the geography encoding of the 30 samples of each group and the
geography encoding of L. As a comparison, we do the same for
location embeddings (the embedding matrix used in our model to
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Figure 6: Box plots of the Euclidean distances between L’s
neighbors and L under geography encoding and location em-
bedding.
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Figure 7: Box plots of the inner product between L’s neigh-
bors and L under geography encoding and location embed-
ding.

map location IDs to embedding vectors). We show box plots of the
two types of embeddings in Figure 6.

A.2.2 Findings. We see from Figure 6(b), locations farther away
from L generally have greater Euclidean distances under the ge-
ography encoding. However, there is no significant relationship
between Euclidean distances of the embedding vectors and geo-
graphical distances for locations, as shown in Figure 6(a). It suggests
that the geography encoder indeed can capture geographical re-
lations implicitly. We also show box plots of the inner product in
Figure 7. It shows that locations farther away from L generally have
smaller inner product under the geography encoding. And there
is also no significant relationship between inner product of the
embedding vectors and geographical distances for locations.
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Figure 8: Parameter sensitivity analysis on Brightkite.

A.3 Derivation of the Loss based on
Importance Sampling

Given the probability P(k |i) =
exp (ri ,k /T )∑

k′<Lu exp (ri ,k′/T )
, we would like

to approximate the expectation
∑
k<Lu P(k |i) log(1 − σ (yi ,k )) by

the proposal distribution Q(k |i) based on importance sampling. In
particular, given the K samples drawn from the proposal Q(k |i),∑
k<Lu

P(k |i) log
(
1 − σ (yi ,k )

)
≈

1
K

∑
k

P(k |i)

Q(k |i)
log

(
1 − σ (yi ,k )

)
.

Since it is time-consuming to compute the normalization term, it is
also approximated with these K samples, i.e.,

ZP =
∑

k ∈L\Lu
exp (ri ,k/T ) ≈ ZQ

1
K

∑
k

exp
(
ri ,k/T − ln Q̃(k |i)

)
.

where Q(k |i) = 1
ZQ Q̃(k |i). Then we define the weight of the k-th

sample as follows:

wk =
1
K

P(k |i)

Q(k |i)
=

ZQ

KZP

P̃(k |i)

Q̃(k |i)
=

exp
(
ri ,k/T − ln Q̃(k |i)

)
∑
k exp

(
ri ,k/T − ln Q̃(k |i)

) .
Using the sample weight, the expectation can be simplified:∑

k<Lu
P(k |i) log

(
1 − σ (yi ,k )

)
≈

∑
k

wk log
(
1 − σ (yi ,k )

)
.

A.4 Discussions of Capturing the Spatial
Clustering Phenomenon in GeoSAN

According to Section A.2, the geography encoder indeed encodes
geographical information successfully. Recall that the work [36]
exploited geographical influence in the following way to capture
the spatial clustering phenomenon,

log P(k |Lu ) =
∑
l ∈Lu

log P(d(k, l)).

Considering a simplified GeoSAN, which only uses the geography
encoder and the attention decoder, and computes preference scores
based on inner product, it is then formulated as

yi ,k =
i∑

l=1
αklE

T
l Ek ,

where El is the output of the geography encoder by feeding the GPS
of location l as input, and αkl is the attention weight. According
to Section A.2, ETl Ek is negatively correlated with the physical
distance d(k, l) between location k and location l . Therefore, the
preference score function in the simplified GeoSAN is strongly
connected with [36], indicating that GeoSAN can implicitly capture
the spatial clustering phenomenon without fitting the density of
distance between any two visited locations. When only exploiting
the last check-in location for computing the preference score yi ,k ,
the preference score function intrinsically models distance-aware
location transition.

A.5 Parameter Sensitivity Analysis on the
Brightkite Dataset

Here we present the results of parameter sensitivity analysis on
the Brightkite dataset in Figure 8. Figure 8(a) and Figure 8(b) show
the impact of using different geography encoding dimensions and
using different n-grams. We see that the overall trend is similar to
the other two datasets. Figure 8(c) illustrates the impact of using
different combinations of negative samplers and the loss function
when the number of negative samples varies. Again, we see that
the proposed weighted loss function consistently outperforms the
unweighted one, and the proposed kNN-based negative samplers
is better than the uniform negative sampler.
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