
How Powerful is Graph Convolution for Recommendation?
Yifei Shen

1
, Yongji Wu

2
, Yao Zhang

3
, Caihua Shan

4
, Jun Zhang

1
, Khaled B. Letaief

1
, Dongsheng Li

4

1
HKUST,

2
Duke University,

3
Fudan University,

4
Microsoft Research Asia

yshenaw@connect.ust.hk, wuyongji317@gmail.com, {yaozhang,dongshengli}@fudan.edu.cn,

{eejzhang, eekhaled}@ust.hk, caihuashan@microsoft.com

ABSTRACT
Graph convolutional networks (GCNs) have recently enabled a pop-

ular class of algorithms for collaborative filtering (CF). Nevertheless,

the theoretical underpinnings of their empirical successes remain

elusive. In this paper, we endeavor to obtain a better understanding

of GCN-based CF methods via the lens of graph signal processing.

By identifying the critical role of smoothness, a key concept in

graph signal processing, we develop a unified graph convolution-

based framework for CF. We prove that many existing CF methods

are special cases of this framework, including the neighborhood-

based methods, low-rank matrix factorization, linear auto-encoders,

and LightGCN, corresponding to different low-pass filters. Based

on our framework, we then present a simple and computationally

efficient CF baseline, which we shall refer to as Graph Filter based

Collaborative Filtering (GF-CF). Given an implicit feedback ma-

trix, GF-CF can be obtained in a closed form instead of expensive

training with back-propagation. Experiments will show that GF-CF

achieves competitive or better performance against deep learning-

based methods on three well-known datasets, notably with a 70%

performance gain over LightGCN on the Amazon-book dataset.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
collaborative filtering, graph convolution, graph signal processing

ACM Reference Format:
Yifei Shen

1
, Yongji Wu

2
, Yao Zhang

3
, Caihua Shan

4
, Jun Zhang

1
, Khaled B.

Letaief
1
, Dongsheng Li

4
. 2021. How Powerful is Graph Convolution for Rec-

ommendation?. In CIKM ’21: ACM International Conference on Information
and Knowledge Management, Nov 01–05, 2021, Queensland, Australia. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3459637.3482264

1 INTRODUCTION
Recommender systems have achieved great successes in many

businesses, e.g., for product recommendation on Amazon [25] and

playlist generation on Youtube [7], etc. As the algorithmic effective-

ness will have a direct impact on the commercial success, building a

This work was done when the first three authors were interns with Microsoft Research

Asia. This work was supported in part by the Hong Kong Research Grants Council

under Grant No. 16210719. Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

CIKM ’21, Nov 01–05, 2021, Queensland, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482264

good recommendation engine, especially via collaborative filtering

(CF), remains an active research area, with consistent innovations

in both conventional methods [6, 21, 31] and recently emerged deep

learning approaches [13, 15, 24].

Over the past decade, we have witnessed great progress in CF

algorithms. Model-based methods largely resort to low-dimensional

structures in high-dimensional data [42], e.g., low-rank matrix fac-

torization [6, 17, 22, 28] and autoencoders [24, 36, 43]. On the other

hand, neighborhood-based methods [1, 39] achieve competitive

performance based on simple similarity measures, e.g., the cosine

similarity between items. Furthermore, these two types of meth-

ods can be incorporated together to improve the performance, e.g.,

SVD++ [21]. From the graph perspective, the neighborhood-based

methods and SVD++ effectively exploit the one-hop information in

the user-item interaction graph.

To take advantage of the rich multi-hop neighborhood infor-

mation, graph convolutional networks (GCNs), e.g., GC-MC [4],

NGCF [41], LightGCN [13], have been recently proposed and be-

come state-of-the-art methods for CF. NGCF [41] was inspired by

the GCNs developed for attribute graphs [19], and it inherits the

key ingredients from GCNs, including initial embeddings, feature

transformation, neighborhood aggregation, and nonlinear activa-

tion. As the graphs in CF tasks are non-attributed, these operations

may not be necessary [13]. Therefore, in LightGCN [13], only the

most important components, i.e., trained initial embeddings and

graph convolution, are preserved. Removing the unnecessary com-

ponents leads to easier training and better generalization [46, 47],

and thus LightGCN significantly outperforms NGCF in both accu-

racy and efficiency. While these empirical studies have produced

promising results, the underlying reasons for the effectiveness of

these methods remain elusive. From the theoretical perspective,

an intriguing question is what plays an essential role in the success
of GCN-based methods for CF. From the practical perspective, it is

interesting to investigate to what extent we can reduce the training
cost while effectively exploiting the rich information of the user-item
interaction graph.

This paper endeavors to obtain a better understanding of GCN-

based methods and develop a unified framework based on graph

convolution that incorporates classic methods. In particular, we

identify the importance of a key concept in graph signal processing

in developing CF algorithms, namely, smoothness. Conceptually,
if a user interacted with an item, then their embeddings should

be similar. In graph signal processing, the similarity between the

embeddings of the interacted user-item pair defines the smooth-

ness of the embedding. Meanwhile, low-pass filters on graphs, e.g.,

the light convolution in LightGCN [13], are used to promote the

smoothness of graph signals. We will therefore argue that it is

the smoothness of the embeddings and the low-pass filtering that

play a pivotal role in GCN-based methods. By theoretical analysis

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1619

https://doi.org/10.1145/3459637.3482264
https://doi.org/10.1145/3459637.3482264
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459637.3482264&domain=pdf&date_stamp=2021-10-30

and experiments, we will show that the performance of untrained
LightGCN is competitive to a trained one when the embedding

dimension is sufficiently large, due to the smoothing effect of the

light convolution. Inspired by this finding, we derive a closed-form

solution for the untrained LightGCN with Infinitely Dimensional

Embedding (LGCN-IDE). It is shown that LGCN-IDE outperforms

LightGCN by more than 40% on the Amazon-book dataset.

Motivated by its simplicity and effectiveness, we extend LGCN-

IDE to incorporate general low-pass filters, which form a unified

framework for CF. Surprisingly, it is proved that the neighborhood-

based methods [1], low-rank matrix factorization [6], and linear

auto-encoders [36] are all special cases of this framework with

various classic low-pass filters. This finding verifies the effective-

ness of graph convolution with low-pass filters for CF. We further

present a simple and computationally efficient CF method, which

is an integration of linear filters and an ideal low-pass filter. Given

an implicit feedback matrix, our proposed method has a closed-

form solution and as such it would not require expensive training.

More importantly and despite of its simplicity, the proposed method

achieves competitive or better performance compared with deep

learning methods.

To summarize, this work has made the following contributions.

(1) By identifying the critical role of the smoothness and low-

pass filtering, we provide a novel perspective to understand

the algorithms for CF.

(2) Using both theoretical justification and experiments, we

show that the untrained LightGCN can achieve competitive

performance as a trained one when the embedding dimen-

sion is sufficiently large. We further derive a closed-form

solution for untrained LightGCN with infinitely dimensional

embedding.

(3) Built upon the closed-form solution, we develop a general

graph filter-based framework for CF. We prove that the

neighborhood-basedmethods, linear auto-encoders, and low-

rank matrix factorization are special cases of this framework,

corresponding to various classic low-pass filters.

(4) We present a simple and computationally efficient method,

named GF-CF. With a small fraction of training time, GF-

CF achieves competitive or higher performance compared

with the state-of-the-art deep learning methods on three

well-known datasets.

The code to reproduce the experiments is available at https://github.

com/yshenaw/GF_CF.

2 PRELIMINARIES
2.1 Notations and Terminology
This subsection presents some useful notations and definitions.

We first define user set U and item set I. As in [13], this paper

considers the recommendation problem with implicit feedback. The

implicit feedback matrix 𝑹 ∈ {0, 1} |U |×|I |
is defined as follows:

𝑹𝑢,𝑖 =

{
1, if (𝑢, 𝑖) interaction is observed,

0, otherwise,

and 𝒓𝑢 denotes the 𝑢-th row of 𝑹.

The adjacency matrix of the user-item interaction graph is given

by

𝑨 =

[
0 𝑹
𝑹𝑇 0

]
. (1)

In this bipartite graph, we denote the neighbors of node 𝑘 as N𝑘 ,
and its cardinality as 𝑁𝑘 = |N𝑘 |.

We denote the all one column vector of any dimension as 1, and
degree matrices as 𝑫𝑈 = Diag(𝑹 · 1) and 𝑫𝐼 = Diag(1𝑇 𝑹). The
normalized rating matrix is denoted as

˜𝑹 = 𝑫
− 1

2

𝑈
𝑹𝑫

− 1

2

𝐼
,

with �̃�𝑢 as the 𝑢-th row of
˜𝑹. Similarly, the normalized user-item

adjacency matrix is given by

˜𝑨 =

[
0 ˜𝑹
˜𝑹𝑇 0

]
.

We also define the item-item normalized adjacency matrix as

˜𝑷 = ˜𝑹𝑇 ˜𝑹 .

We then define an important concept, namely, Stiefel manifold,

which can help to connect low-rank matrix factorization and GCN-

based methods in Section 4.2.

Definition 2.1. (Stiefel manifold) The Stiefel manifold St(𝑛,𝑚) is
defined as the subspace of orthonormal N-frames in R𝑛 , namely,

St(𝑛,𝑚) = {𝚪 ∈ R𝑛×𝑚 : 𝚪
𝑇
𝚪 = 𝑰 } (2)

where 𝑰 is the identity matrix.

2.2 Graph Signal Processing
In this subsection, we introduce basic concepts of graph signal

processing [8, 29]. We consider a weighted undirected graph G =

(V, E) with 𝑛 nodes where V and E denote the vertex set and

edge set, respectively. The graph can be represented as an adjacency

matrix𝑨 ∈ R𝑛×𝑛 . A graph signal is defined as a function 𝑥 : V → R
and it can be represented as a 𝑛-dimensional vector 𝒙 = [𝑥 (𝑖)]𝑖∈V .

For a graph signal, the derivative is defined as (∇𝒙)𝑖, 𝑗 =
√
𝐴𝑖, 𝑗 (𝑥𝑖 −

𝑥 𝑗).
The smoothness of a graph signal can be measured by the graph

quadratic form, which is the squared norm of the graph derivative

as defined below:

𝑆 (𝒙) = 1

2

∥∇𝒙 ∥2

𝐹 =
∑
𝑖, 𝑗

𝐴𝑖, 𝑗 (𝑥𝑖 − 𝑥 𝑗)2 = 𝒙𝑇 𝑳𝒙 .

Here, 𝑳 = 𝑫 − 𝑨 is the graph Laplacian matrix
1
. A smaller

𝑆 (𝒙)
∥𝒙 ∥2

indicates smoother signals.

In many applications, a graph signal is often described in a vector

form 𝑥 : V → R𝑑 and its smoothness can be written as follows:

𝑆2 (𝒙) =
∑
𝑖, 𝑗

𝐴𝑖, 𝑗 ∥𝒙𝑖 − 𝒙 𝑗 ∥2

2
. (3)

As 𝑳 is real and symmetric, its eigendecomposition is given by

𝑳 = 𝑼𝚲𝑼𝑇 where 𝚲 = Diag(𝜆1, · · · , 𝜆𝑛), 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 , and

𝑼 = [𝒖1, · · · , 𝒖𝑛] with 𝒖𝑖 ∈ R𝑛 being the eigenvector for eigenvalue
𝜆𝑖 .

1
The graph Laplacian matrix can also be defined by some normalized version of 𝑫 −𝑨,

e.g.,
˜𝑳 = 𝑰 − ˜𝑨.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1620

https://github.com/yshenaw/GF_CF
https://github.com/yshenaw/GF_CF

Next we discuss the frequency of the graph signal and define

Fourier Transform on graphs. Intuitively, the graph signal has a

higher frequency if it is more oscillatory and not smooth. As 𝜆1

is the smallest eigenvalue, for any graph signal 𝒙 ∈ R𝑛 , we have
𝑆 (𝒙)
∥𝒙 ∥2

≥ 𝑆 (𝒖1)
∥𝒖1 ∥2

. Thus, the eigenvector with a smaller eigenvalue

corresponds to a lower frequency signal component. We can define

the Graph Fourier Transform (GFT) basis as the eigenvector matrix

𝑼 and we call �̂� = 𝑼𝑇 𝒙 as the GFT of the graph signal 𝒙 . Similar

to the Fourier transform, GFT is a linear orthogonal transform and

its inverse transform is given by 𝒙 = 𝑼 �̂� . GFT enables us to define

graph filters and graph convolution.

Definition 2.2. (Graph Filter) Given a graph Laplacian matrix, as

well as its eigenvectors and eigenvalues, then the graph filterH(𝑳)
is defined as follows:

H(𝑳) = 𝑼Diag(ℎ(𝜆1), · · · , ℎ(𝜆𝑛))𝑼𝑇 .

where ℎ(·) is the filter defined on the eigenvalues.

Definition 2.3. (Graph Convolution) The graph convolution of a

input signal 𝒙 and the filter H(𝑳) is defined as follows:

𝒚 = H(𝑳)𝒙 = 𝑼Diag(ℎ(𝜆1), · · · , ℎ(𝜆𝑛))𝑼𝑇 𝒙 .

Similar to the definition of convolution in classic signal process-

ing, the graph signal is transformed by GFT 𝑼𝑇 , multiplied by a

filter ℎ(·), and transformed back by inverse GFT 𝑼 . In the context

of CF, the graph signal is often the observed ratings for a given user

[6], or the initial embeddings of users/items [13, 41].

In the signal processing literature, the signal is often smooth and

with low frequency, and the noise is often non-smooth and with a

high frequency. One important class of filters is the low-pass filters,
which promotes smoothness of graph signals for denoising. The

graph low-pass filters are defined as follows.

Definition 2.4. (Low-pass Filter) For 𝑘 = 1, · · · , 𝑛 − 1, we define

the ratio

𝜂𝑘 :=
max{|ℎ(𝜆𝑘+1

) |, · · · , |ℎ(𝜆𝑛) |}
min{|ℎ(𝜆1) |, · · · , |ℎ(𝜆𝑘) |}

. (4)

The graph filterH(𝑳) is 𝑘-low-pass if and only if the low-pass ratio
satisfies 𝜂𝑘 ∈ [0, 1).

The low-pass ratio defines howmuch of the high-frequency com-

ponent of a signal is allowed to pass compared to the low-frequency

components. If 𝜂𝑘 < 1, then the filter passes low-frequency signals

and is called a low-pass filter. We here list some important low-

pass filters and will connect these filters with classic methods for

recommendation in Section 4.2.

Linear Filter. The linear filter is given by

ℎ(𝜆𝑖) =
𝐾∑
𝑘=0

𝛼𝑘𝜆
𝑘
𝑖 , (5)

where 𝛼𝑘 is the filter’s coefficient. It is called linear due to its

similarity with linear time invariant filters in classic signal pro-

cessing. We will show that this filter corresponds to LightGCN and

neighborhood-based methods.

Ideal Low-pass Filter. The ideal low-pass filter has a cut-off fre-

quency
¯𝜆. The filter is defined as

ℎ(𝜆𝑖) =
{

1, if 𝜆𝑖 ≤ ¯𝜆

0, otherwise.
(6)

It is called ideal as the high-frequency signals are ideally cut off

with no leakage. We will show that this filter corresponds to the

low-rank matrix factorization method.

Opinion Dynamics. The opinion dynamics are a graph diffusion
process, which is a GF-AR(1) model [11]:𝒚𝑡+1 = (1−𝛽) (𝑰 −𝛼𝑳)𝒚𝑡 +
𝛽𝒙𝑡 . The steady state opinions are given by 𝒚 = lim𝑡→∞𝒚𝑡 = (𝑰 +
𝛼𝑳)−1𝒙 = H(𝑳)𝒙 where 𝛼 = 𝛽 (1 − 𝛼)𝛼 . Thus, the corresponding
graph filter is

ℎ(𝜆𝑖) =
1

1 + 𝛼𝜆𝑖
. (7)

In opinion dynamics, the matrix inverse or eigenvalue decomposi-

tion is required. Thus, applying this filter introduces a high memory

cost.Wewill show that it is closely related to the linear auto-encoder

method.

2.3 LightGCN Brief
LightGCN [13] is a state-of-the-art GCN-based method in CF. In this

paper, LightGCN will be used as the vehicle to elaborate our theory

and adopted as the main baseline for performance comparison.

LightGCN leverages the user-item interaction graph to propagate

the embedding as follows:

𝑬 (𝑘+1) = ˜𝑨𝑬 (𝑘) ,

where 𝑬 (0) ∈ R(|U |+|I |)×𝑑
is the learnable initial embedding ma-

trix of users and items. For a 𝐾-layer LightGCN, the final embed-

dings can be computed as follows:

𝑬 = 𝛼0𝑬
(0) + 𝛼1𝑬

(1) + · · · + 𝛼𝐾𝑬 (𝐾)

= 𝛼0𝑬
(0) + 𝛼1

˜𝑨𝑬 (0) + · · · + 𝛼𝐾 ˜𝑨𝐾𝑬 (0) . (8)

The model prediction is defined as the inner product of the user’s

and item’s final representation 𝑦𝑢𝑖 = 𝒆𝑇𝑢 𝒆𝑖 , where 𝒆𝑢 and 𝒆𝑖 are the
corresponding rows of 𝑬 .

To optimize LightGCN, the Bayesian personalized ranking (BPR)

loss [31] is adopted:

𝑙BPR = −
|U |∑
𝑢=1

∑
𝑖∈N𝑢

∑
𝑗∉N𝑢

log𝜎 (𝒆𝑇𝑢 𝒆𝑖 − 𝒆𝑇𝑢 𝒆 𝑗) . (9)

3 ON THE IMPORTANCE OF SMOOTHNESS
AND LOW-PASS FILTERING

In this section, we identify the importance of smoothness and low-

pass filters in CF, by using the light convolution in LightGCN as a

specific example.

The embeddings play an essential role in CF while smoothness

is a key concept in graph signal processing. We observe that there

are strong connections between the good embeddings and their

smoothness on the graph.We consider the dot product based embed-

ding model. Specifically, let 𝒆𝑢 denote the embedding for the 𝑢-th

user and 𝒆𝑖 denote the embedding for the 𝑖-th item. The predicted

score for the 𝑢-th user and 𝑖-th item is defined by the dot product

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1621

64 128 256 512 1024 2048 4096

Embedding Dimension

0.05

0.1

0.15

0.2

R
e
c
a
ll@

2
0

SOTA

LightGCN-R

(a) Recall on Gowalla dataset.

64 128 256 512 1024 2048 4096

Embedding Dimension

0

0.05

0.1

0.15

N
D

C
G

@
2
0

SOTA

LightGCN-R

(b) NDCG on Gowalla dataset.

64 128 256 512 1024 2048 4096

Embedding Dimension

0

0.02

0.04

0.06

R
e
c
a
ll@

2
0

SOTA

LightGCN-R

(c) Recall on Amazon-book dataset.

64 128 256 512 1024 2048 4096

Embedding Dimension

0

0.01

0.02

0.03

0.04

0.05

N
D

C
G

@
2
0

SOTA

LightGCN-R

(d) NDCG on Amazon-book dataset.

Figure 1: Performance of untrained LightGCN versus SOTA, where the SOTA line is LightGCN’s performance reported in [13]
and LightGCN-R denotes the untrained LightGCN with different embedding dimensions.

𝒆𝑇𝑢 𝒆𝑖 . If 𝑹𝑢,𝑖 = 1, we should promote the similarities between 𝒆𝑢
and 𝒆𝑖 . By the definition of smoothness of graph signals (3), if 𝒆𝑢
and 𝒆𝑖 are similar for connected user-item pairs, the embeddings

are smooth signals on the graph. Consequently, optimizing loss

functions, e.g., BPR loss (9), and enhancing the smoothness of the

embeddings share the same goal: promoting the similarity between

𝒆𝑢 and 𝒆𝑖 for 𝑹𝑢,𝑖 = 1.

The above discussion provides a qualitative intuition for the role

of smoothness in embeddings. We will now analyze the linear filter

in LightGCN to obtain quantitative results. The LightGCN consists

of two components: the initial embedding and a linear filter. If the

untrained LightGCN achieves good performance, it must be the

linear filter playing the essential role as the initial embedding is

random. The next proposition shows that untrained LightGCN will

have a low BPR loss under certain conditions.

Theorem 3.1. Denote 𝑁max = max𝑖 𝑁𝑖 and 𝑁min = min𝑖 𝑁𝑖
where 𝑖 ∈ U ∪ I. If 𝑬 (0) ∈ R(|I |+ |U |)×𝑑 follows an i.i.d. uniform
distribution over the unit sphere with

𝑑 >
𝐶𝑁 3

max
log(|I| + |U|)
𝑁min

, (10)

then for a one-layer untrained LightGCN, we have

P
({
𝒆 (1)𝑇𝑢 𝒆 (0)

𝑖
> 𝒆 (1)𝑇𝑢 𝒆 (0)

𝑗
| (𝑢, 𝑖) ∈ S1, (𝑢, 𝑗) ∈ S2

})
≥ 3/4, (11)

where 𝐶 is an absolute constant, S1 = {(𝑢, 𝑖) |𝑹𝑢,𝑖 = 1}, S2 =

{(𝑢, 𝑗) |𝑹𝑢,𝑗 = 0}.
Remark. (Interpretations of Theorem 3.1) Equation (11) implies

a low BPR loss as the predicted score of any positive pair is larger

than that of any negative pair. Due to the smoothing effect of light

convolution (linear filters), the final embeddings between inter-

acted pairs are similar even if the initial embeddings are random.

In Equation (10), 𝑁max and 𝑁min are adopted for a worst-case anal-

ysis, and in practice, we can replace them with the average degree.

Equation (10) shows that the required embedding dimension of

untrained LightGCN grows with the dataset density, which implies

untrained LightGCN is more effective on sparse datasets. For the

Gaussian initialization adopted in [13], the results are similar as

high dimensional Gaussian random vectors concentrate around

a sphere (refer to Section 3.1 in [38]). The probability 3/4 can be

improved to any probability approaches arbitrarily close to 1. The

high-level reason for untrained LightGCN performing well is that

the information contained in the rating matrix and the graph are

identical. The BPR loss is adopted for exploiting the information in

rating matrix while the low-pass filters are to exploit information

in the graph. Thus, a proper use of low-pass filters can accelerate

the training or even avoid the training. Interestingly, some recent

works also reveal that infinitely wide random CNNs achieve better

performance than trained ones [2].

Based on Theorem 3.1, we argue that the performance of un-
trained LightGCN improves with the embedding dimension and

it should be competitive to a trained one when the embedding

dimension is sufficiently large.

To verify this argument, we follow the experiment settings in

[13] and conduct the experiments for a 3-layer untrained LightGCN.

The initial embeddings 𝑬 (0)
is initialized following an i.i.d. Gaussian

distribution N(0, 0.1) as in the original paper. Once the model is

initialized, we do not train it but simply compute the user/item

embeddings using Equation (8) and then directly test it on the test

dataset. We use two sparse datasets, i.e., Gowalla and Amazon-book.

The test performance versus the embedding dimension is shown

in Fig. 1. As the training/test splitting of two datasets is identical

to [13], we regard the LightGCN’s performance reported in [13] as

the state-of-the-art. We will also compare to LightGCN with large

embedding dimensions in Table 4. The experiments agree with our

theory well. As the linear filter is to promote the smoothness, it

demonstrates the crucial role of smoothness in CF.

However, the untrained LightGCN is not a practical algorithm

for recommendation as the large embedding dimension leads to

an expensive memory cost and inference time. Fortunately, the

untrained LightGCN with infinitely dimensional embedding has

a closed-form solution for predicted scores, as shown in the next

theorem.

Theorem 3.2. Consider an untrained LightGCN with
𝑬 (0) ∈ R(|I |+ |U |)×𝑑 following an i.i.d. distribution with zero mean
and non-zero variance. As𝑑 → ∞, the predicted score of the untrained
LightGCN follows

𝒔𝑢 =

𝐾−1∑
𝑘=0

𝛽𝑘 �̃�𝑢 (˜𝑹𝑇 ˜𝑹)𝑘 . (12)

where 𝛽𝑘 are constants depending on [𝛼𝑘]𝑘=0, · · · ,𝐾 in (8).

Remark. (Interpretations of ˜𝑹𝑇 ˜𝑹) As shown in Theorem 3.2,

the gram matrix
˜𝑹𝑇 ˜𝑹 plays a pivotal role. For sparse binary data,

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1622

Table 1: Classic methods versus their corresponding graph filters and spatial GCNs.

Method Low-rank Factorization [6] Linear Auto-encoder [36] Neighborhood-based [1] LGCN-IDE (12)

Input Signal 𝒓𝑢 𝑫
− 1

2

𝐼
𝒓𝑢 �̃�𝑢 𝒓𝑢 �̃�𝑢

Graph Filter ℎ(𝜆𝑖) = 1𝑖≤𝑑 ℎ(𝜆𝑖) = 1−𝜆𝑖
1+𝜇−𝜆𝑖 ℎ(𝜆𝑖) = 1 − 𝜆𝑖 ℎ(𝜆𝑖) =

∑𝐾−1

𝑘=0
𝛽𝑘 (1 − 𝜆𝑖)𝑘

Corresponding Spatial GCN

Infinite-layer spatial GCN with

convolutional normalization (16) (17)

Infinite-layer spatial GCN

with layer combination (21)

Single-layer spatial GCN

Multi-layer spatial GCN

with layer combination

(𝑫− 1

2

𝐼
𝑹𝑇 𝑹𝑫

− 1

2

𝐼
)𝑖 𝑗 defines the cosine similarity between item 𝑖 and

item 𝑗 [1]. Likewise, (˜𝑹𝑇 ˜𝑹)𝑖 𝑗 provides a similarity measure between

item 𝑖 and item 𝑗 . Directly using the gram matrix as the item-item

similarity results in the neighborhood-based method [1], which

was the winner of Millions of Song Competition
2
. The similarity

between the neighborhood-based method and LightGCN is not sur-

prising as LightGCN is based on the neighborhood propagation. As

LightGCN consists of multi-hop propagation, the term
˜𝑹𝑇 ˜𝑹 appears

as polynomials. From the graph signal processing perspective, it is

a linear filter, which is low-pass.

We call (12) as LightGCNwith Infinitely Dimensional Embedding

(LGCN-IDE). The performance of LGCN-IDE is shown in Table 3.

Remarkably, we see that on Amazon-book dataset, it outperforms

the performance of LightGCN reported in [13] by more than 40%

under exactly the same training/test data splits.

4 A UNIFIED FRAMEWORK
In this section, we first extend LGCN-IDE to incorporate general

low-pass filters, which form a unified framework. Then we prove

that this framework unifies the neighborhood-based approaches,

low-rank matrix factorization, linear auto-encoders, and linear

graph convolutional networks, where different methods correspond

to different low pass-filters. Finally, we present a simple yet effective

algorithm for CF.

4.1 A Unified Graph Low-pass Filter Based
Framework

In this subsection, we extend (12) to incorporate general graph

filters. To simplify the notations, we denote
˜𝑷 = ˜𝑹𝑇 ˜𝑹 in the re-

maining of the article. Note that
˜𝑷 can also be seen as a normalized

adjacency matrix for an item-to-item graph, whose eigenvalues are

between 0 and 1.

Theorem 4.1. Let 𝜆1 ≥ · · · ≥ 𝜆 |I | be the eigenvalues of ˜𝑷 , then

0 ≤ 𝜆 |I | ≤ · · · ≤ 𝜆1 ≤ 1.

The graph Laplacian of the item-to-item graph is defined as

�̃� = 𝑰 − ˜𝑷 . In this way, we can apply graph signal processing to

the item-to-item graph. Next we elaborate our unified framework,

which is an extension of (12) with general graph filters. We consider

an input graph signal 𝒓𝑢 , which is some transformation of the

users’ observed ratings 𝒓𝑢 . Then a low-pass filter is applied to the

graph signal to obtain a filtered signal. Finally, we may scale the

obtained graph signal to get the final prediction scores. Denoting

2
The competition is at https://www.kaggle.com/c/msdchallenge

the eigendecomposition by �̃� = 𝑼𝚲𝑼𝑇 , the framework is given by

𝒔𝑢 = 𝒓𝑢𝑼Diag(ℎ(𝜆1), · · · , ℎ(𝜆𝑛))𝑼𝑇 , (13)

where 𝒔𝑢 is the filtered predicted score, and ℎ(·) is a low-pass

filter. From the graph signal processing perspective, it is a graph

convolution, i.e., a graph signal 𝒓𝑢 ∈ R |I |
convolving with a low-

pass filter ℎ(·).

4.2 Interpreting Classic Methods from Graph
Signal Processing Perspective

Interestingly, some classic works for recommendation can be inter-

preted as graph signal processing approaches, where the low-pass

filter plays an essential role. The classic methods typically involves

auto-encoder-based [24, 27, 36], matrix factorization-based [6, 31],

and GCN-based ones [13, 41, 51]. In this subsection, we will provide

a unified view of the linear methods from the graph signal process-

ing perspective. As the spectral convolution can be transformed into

a spatial convolution in GCNs by first-order approximation [19], it

is interesting to investigate what kind of GCNs will these classic

methods induce. These GCNs induced by classic algorithms can also

be seen as white-box neural networks [5]. A test of performance

for these GCNs is left for future works.

4.2.1 Low-rank Matrix Factorization. Low-rank matrix factoriza-

tion is one of the most classic algorithms for CF. Note that GFT is

also a matrix factorization where the low-frequency signal compo-

nents correspond to the principle components of the rating matrix.

This observation allows us to connect MF and graph-based methods.

We take the objective function in a recent work [6] as an example.

Denote 𝑑 as the embedding dimension, the model is given by

𝑼 ∗, 𝑽 ∗ = argmin

𝑼 ∈R|U|×𝑑 ,𝑽 ∈R|I |×𝑑
∥ ˜𝑹 − 𝑼𝑽𝑇 ∥2

𝐹 s.t. 𝑽𝑇 𝑽 = 𝑰 . (14)

As shown in [6], 𝑽 ∗
contains the smallest 𝐾 eigenvectors of �̃� and

𝑼 ∗ = 𝑹𝑫
1

2

𝐼
𝑽 . Viewing the eigendecomposition as GFT, it can be

interpreted as an ideal low-pass filter (6)

ℎ(𝜆𝑖) = 1𝑖≤𝑑 .

We then turn low-rank matrix factorization into a spatial convo-

lution fashion. This is more difficult than the conversion in GCN

[19] due to the orthogonal constraint and non-convexity of prob-

lem (14). Observing that the optimal solution 𝑽 ∗
to (14) is also the

optimal solution to the following problem

𝑽 ∗ = argmax

𝑿 ∈𝑆𝑡 (|I |,𝑑)
∥ ˜𝑹𝑿 ∥2

𝐹 . (15)

We can rewrite (15) as spatial convolution by first-order expansion

like GCNs [19]. We begin with a random 𝑬 (0) ∈ R |I |×𝑑
, and the

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1623

update rule is given by

�̂� (𝑘) =
(
∇𝑿 ∥ ˜𝑹𝑿 ∥2

𝐹

)���
𝑿=𝑬 (𝑘−1)

= ˜𝑷𝑬 (𝑘−1) , (16)

𝑬 (𝑖) = argmax

𝑺∈𝑆𝑡 (|I |,𝑑)
⟨𝑺, �̂� (𝑘) ⟩ (𝑎)

= �̂� (𝑘)
(
�̂� (𝑘)𝑇 �̂� (𝑘)

)− 1

2

, (17)

where (a) follows Proposition 7 in [18]. The final embeddings are

given by

𝑽 ∗ = 𝑬 = 𝑬 (∞) .

Note that (16) is a spatial graph convolution, and (17) is coinci-

dentally equivalent to convolutional normalization for CNNs [26]

(refer to (6)-(8) in [26]). The convolutional normalization was pro-

posed to accelerate the training of convolutional networks and

improve robustness. From this view, the low-rank matrix factor-

ization is equivalent to an infinite layer GCN with convolutional

normalization. As the number of layers is large, it suffers from the

over-smoothing issue [23], which hurts the performance.

4.2.2 Linear Auto-encoders. In the linear auto-encoders, e.g., EASE

[34] and SLIM [27], the predicted score vector of a user (𝒔𝑢) is
obtained by the dot product

𝒔𝑢 = 𝒓𝑢𝑩,

where 𝑩 ∈ R |I |×|I |
is a learnable weight matrix. The training ob-

jective is some regularized or constrained version ofmin𝑩
∑
𝑢 ∥𝒓𝑢−

𝒓𝑢𝑩∥2

2
. From the graph signal processing view, it can be interpreted

as a graph signal 𝒓𝑢 convolving with a filter 𝑩, and 𝒓𝑢 = 𝒓𝑢𝑩 is a

steady state. This defines a graph diffusion on the corresponding

graph like opinion dynamics (7). Next, we show the equivalence

between a specific version of linear auto-encoders and the graph

diffusion filter.

As shown in [36], the following linear auto-encoder is able to

achieve competitive performance compared with the deep ones

[24, 43]. Specifically, we consider the following formulation in [36]

for simplicity:

minimize

𝑩
∥ ˜𝑹 − ˜𝑹𝑩∥2

𝐹 + 𝜇∥𝑩∥2

𝐹 . (18)

As (18) is a ridge regression, we can write down the closed-form

solution as

𝑩∗ = (˜𝑷 + 𝜇𝑰)−1 ˜𝑷 . (19)

Viewing the eigenvalue decomposition as GFT, the graph filter in

(19) is given by

ℎ(𝜆𝑖) =
1 − 𝜆𝑖

1 + 𝜇 − 𝜆𝑖
. (20)

To understand (20) in the content of low-pass filters, the low-pass

ratio 𝜂𝑘 in (4) is given by

𝜂𝑘 =

1−𝜆𝑘+1

1+𝜇−𝜆𝑘+1

1−𝜆𝑘
1+𝜇−𝜆𝑘

=
(1 − 𝜆𝑘+1

) (1 + 𝜇 − 𝜆𝑘)
(1 − 𝜆𝑘) (1 + 𝜇 − 𝜆𝑘+1

)

= 1 − 𝜇 (𝜆𝑘+1
− 𝜆𝑘)

(1 − 𝜆𝑘) (1 + 𝜇 − 𝜆𝑘+1
) < 1.

The convolutional filter in (20) is similar to opinion dynamics and is

a kind of graph diffusion filter. Like other diffusion-based methods,

the memory cost of linear auto-encoder is high as we need to store

matrix 𝑩 in (18).

In the literature, the Neumann series are often adopted to convert

the graph diffusion into a spatial convolution [20, 44]. Similarly, we

can use it to interpret (19) as spatial GCNs. For 𝜇 > 1, (19) can be

written as

(˜𝑷 + 𝜇𝑰)−1 ˜𝑷 =
1

𝜇

(∞∑
𝑘=0

(−𝜇−1 ˜𝑷)𝑘
)

˜𝑷 . (21)

From this view, the initial embedding is an identity matrix 𝑬 (0) =
𝑰 ∈ R |I |×|I |

, the update of corresponding spatial convolution is

given by

𝑬 (𝑘) = ˜𝑷𝑬 (𝑘−1) ,

and the final embeddings can be obtained as

𝑬 =

∞∑
𝑘=1

−
(
− 1

𝜇

)𝑘
𝑬 (𝑘) .

The layer combination appears naturally and the coefficients de-

crease quickly. As discussed in [13], the layer combination is the key

to alleviate the over-smoothing issue and improve performance.

4.2.3 Neighborhood-based Approaches. The neighborhood-based
approaches are often considered as exploiting first-order graph

information in the literature discussions [13]. We consider the fol-

lowing formulation, which utilizes the grammatrix as the similarity

matrix [1], i.e., 𝒔𝑢 = 𝒓𝑢 ˜𝑷 . Obviously, the corresponding filter is a

first-order linear filter

ℎ(𝜆𝑖) = 1 − 𝜆𝑖 .
and the corresponding spatial GCN is a one-layer GCN. This ap-

proach is simple and scalable. However, it lacks higher-order infor-

mation on the graph.

4.2.4 LGCN-IDE. For completeness, we analyze LGCN-IDE (12).

By eigendecomposition, the corresponding filter takes the form of

ℎ(𝜆𝑖) =
𝐾−1∑
𝑘=0

𝛽𝑘 (1 − 𝜆𝑖)𝑘 .

Since it is still a LightGCN, LGCN-IDE naturally corresponds to

multi-layer spatial GCN with a layer combination.

4.3 A Simple yet Effective Baseline Algorithm
In this subsection, we develop a simple yet effective baseline algo-

rithm, whose training is as efficient as the inference of LightGCN

with a big-O notation. We first analyze the inference computational

complexity of LightGCN. We denote the number of non-zero ele-

ments in 𝑹 as 𝜂. For a LightGCN with 𝑑-dimensional embedding,

the inference time is O(𝜂𝑑).
The general graph filters require eigendecomposition and thus

are not efficient for large-scale recommendation [13]. Fortunately,

there are some graph filters that enjoy a high computational effi-

ciency, i.e., linear filters and ideal low-pass filters. In order to obtain

linear filters, only the normalization is required during training,

and thus the training complexity is O(𝜂). A major drawback of the

linear filters is that they can hardly obtain a high-order information

of the graph.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1624

Table 2: Statistics of the experimented data.

Dataset # User # Item # Interaction Density

Gowalla 29, 858 40, 981 1, 027, 370 0.00084

Yelp2018 31, 668 38, 048 1, 561, 406 0.00130

Amazon-book 52, 643 91, 599 2, 984, 108 0.00062

For the ideal low-pass filter, only the top-K eigenvectors of
˜𝑷 are

required. Nevertheless, a direct computation for the top-K eigenvec-

tor of
˜𝑷 is far from computation and memory efficient because

˜𝑷 is

not as sparse as 𝑹. By using the equivalent formulation in (15), the

largest eigenvectors can be computed by (16), (17), and this iterative

algorithm is called the generalized power method (GPM) in the op-

timization literature [18]. In GPM, we only need to store 𝑹 instead

of
˜𝑷 , and the computational complexity is O((𝑑𝜂 + 𝑑3) log(1/𝜖))

where 𝜖 is the desired accuracy for the eigenvectors. This algorithm

is efficient as long as 𝑑2 < 𝜂. As discussed before, the ideal low-pass

filter is equivalent to an infinite layer GCN without layer combina-

tion and it suffers from over-smoothing, which means that it lacks

a low-order information in the graph.

As a result, we argue that combining the linear filter and ideal

low-pass filter will result in a strong baseline. Specifically, our

proposed algorithm, named as Graph Filter based Collaborative

Filtering (GF-CF), has the following form

𝒔𝑢 = 𝒓𝑢

(
˜𝑹𝑇 ˜𝑹 + 𝛼𝑫− 1

2

𝐼
�̄� �̄�𝑇𝑫

1

2

𝐼

)
, (22)

where 𝒔𝑢 and 𝒓𝑢 denote predicted and observed scores, respectively.

Likewise, �̄� is the top-K singular vectors of
˜𝑹, and 𝛼 is the tuned

parameter. We acknowledge that learning 𝛼 or transforming (22)

into GCNs may lead to better performance. Nevertheless, we will

demonstrate that (22) already achieves the state-of-the-art perfor-

mance.

5 EXPERIMENTS
In this section, we first describe the experimental settings, which

exactly follow [13]. Next, we compare our method with the state-

of-the-art deep learning methods.

5.1 Experimental Settings
To keep the comparison fair, we use the same datasets, the same

train/test splitting, and the identical evaluation metric as in [13].

The statistics of the datasets are listed in Table 2. The evaluation

metrics are recall@20 and ndcg@20.

5.1.1 Benchmarks. We follow [13] to set up the benchmarks.

(1) LightGCN [13]: LightGCN is the state-of-the-art method for

CF. Please refer to Section 2.3 for a detailed description.

(2) NGCF [41]: NGCF is a nonlinear deep GCN-based method.

Besides the components in LightGCN, it contains of feature

transformation, and nonlinear activation.

(3) GRMF and GRMF-norm[13, 30]: GRMF adds a graph Lapla-

cian regularizer to the training objective of BPR loss inmatrix

factorization. In GRMF-norm, the normalized Laplacian is

adopted instead of the graph Laplacian.

Table 3: The comparison of overall performance among GF-
CF and competing methods. The performance of bench-
marks is reproduced from [13].

Dataset Gowalla Yelp2018 Amazon-book
Method recall ndcg recall ndcg recall ndcg
NGCF 0.1570 0.1327 0.0579 0.0477 0.0344 0.0263

Mult-VAE 0.1641 0.1335 0.0584 0.0450 0.0407 0.0315

GRMF 0.1477 0.1205 0.0571 0.0462 0.0354 0.0270

GRMF-norm 0.1557 0.1261 0.0561 0.0454 0.0352 0.0269

LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315

LGCN-IDE 0.1682 0.1347 0.0609 0.0505 0.0612 0.0514

GF-CF 0.1849 0.1518 0.0697 0.0571 0.0710 0.0584

(4) Mult-VAE [24]: This is a variational autoencoder basedmethod.

The data is assumed to be generated by a multinomial distri-

bution and variational inference is adopted to estimate the

parameters.

In [41], it has been shown that NGCF outperforms GC-MC [4],

Pinsage [49], NeuMF [15], CMN [10], MF [31], HOP-Rec [48] on the

same train/test splitting. Thus, we will not include these methods

as benchmarks. We also do not compare with full rank models

[27, 35] due to the out of memory on Amazon-book dataset. The

hyperparameter settings are identical to [13].

For the proposed graph filter based methods, we focus on the

following two variants:

(1) GF-CF: The proposed simple baseline method for CF in (22).

(2) LGCN-IDE: The untrained LightGCN with infinitely dimen-

sional embedding. The closed-form is given in (12).

For the implementation of graph filters, we adopt Scipy [40] for

sparse operation.

5.2 Performance Comparison
The performance of the proposed methods and other benchmarks

are shown in Table 3. Despite the simplicity, GF-CF achieves com-

petitive or better performance than deep learning-based methods.

5.2.1 LGCN-IDE versus LightGCN. LGCN-IDE is an untrained Light-
GCN with an infinitely dimensional embedding. On Gowalla and

Yelp2018, which are of small sizes, LightGCN outperforms LGCN-

IDE. However, LGCN-IDE outperforms LightGCN by a large mar-

gin on the large-scale dataset, i.e., the Amazon-book dataset. In

LightGCN, the known scores are compressed into limited dimen-

sional vectors, which restricts the expressiveness. In contrast, in

LGCN-IDE, the ratings are directly used as the graph signal without

compression. Additionally, LightGCN is trained with a stochastic

gradient descent (SGD) while LGCN-IDE has a closed-form solution.

As the size of the dataset increases, the optimization by SGD be-

comes more difficult. We suspect that these two reasons contribute

to the large performance gain of LGCN-IDE over LightGCN in the

Amazon-book dataset.

5.2.2 Graph filters versus deep learning-based methods. In Table 3,

the simple graph filter achieves competitive or better performance

compared with deep learning-based methods. LightGCN also out-

performs NGCF by removing the non-linear transformations. From

the universal approximation theory [16], deep neural networks can

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1625

Table 4: The comparison of performance and training time of GF-CF and LightGCN.

Dataset Gowalla Yelp2018 Amazon-book
Method recall ndcg training time recall ndcg training time recall ndcg training time
LightGCN-64 0.1830 0.1554 2.77 × 10

4
s 0.0649 0.0530 5.15 × 10

4
s 0.0411 0.0315 1.27 × 10

5
s

LightGCN-128 0.1878 0.1591 3.31 × 10
4
s 0.0671 0.0550 5.66 × 10

4
s 0.0459 0.0353 1.81 × 10

5
s

LightGCN-256 0.1893 0.1606 4.54 × 10
4
s 0.0689 0.0568 8.09 × 10

4
s 0.0481 0.0371 2.98 × 10

5
s

LightGCN-512 0.1892 0.1604 7.28 × 10
4
s 0.0689 0.0569 1.33 × 10

5
s 0.0485 0.0375 5.26 × 10

5
s

GF-CF 0.1849 0.1518 30.5s 0.0697 0.0571 46.0s 0.0710 0.0584 65.8s

approximate linear functions easily. Nevertheless, linear functions

are non-trivial to learn for a neural network trained with SGD. A re-

cent theoretical study demonstrates that it is impossible for neural

networks with tanh, cosine, or quadratic activation to extrapolate

the linear functions well [46]. With ReLU activation, A neural net-

work can extrapolate linear functions well if the training data cover

all directions (e.g., a hypercube covering the origin) [46], which

is not trivial to satisfy in practice. This theoretical result suggests

that learning linear functions is a non-trivial task. In addition, deep

neural networks do well in extracting complicated features, but CF

with implicit feedback is in lack of rich features. Owing to these

two factors, the linear models are able to outperform deep models

in CF with implicit feedback.

5.3 Comparison with LightGCN of Large
Embedding Dimension

In this subsection, we compare GF-CF with LightGCNs of different

embedding dimensions. For the untrained LightGCN, the perfor-

mance improves significantly with the dimension as shown in Fig.

1. The natural questions are 1) does the performance of trained

LightGCN increase significantly as the dimension grows; 2) how

does GF-CF perform compared with LightGCN with large embed-

ding dimensions. We validate these questions empirically in Table 4.

The experiments in this subsection are conducted on a server with

an Intel Xeon(R) CPU E5-2698 v4 @ 2.20GHz and a Tesla V100 GPU.

For the implementation of LightGCN, we download the source code

from https://github.com/gusye1234/LightGCN-PyTorch and train

1000 epochs as the original paper
3
. Due to the excessive training

cost, we do not train LightGCN with an embedding dimension of

more than 512. As shown in Table 4, GF-CF still achieves competi-

tive or higher performance than LightGCN with large embedding

dimensions. As the embedding dimension grows, the performance

improvement of LightGCN becomes marginal, which is similar to

matrix factorization and neural collaborative filtering [32]. The

overall training time of GF-CF is even smaller than 1 training epoch

consumed by LightGCN. It demonstrates that GF-CF is a simple but

hard-to-beat baseline method for CF.

6 RELATEDWORKS
6.1 Collaborative Filtering Methods
Collaborative filtering (CF) plays a fundamental role in modern rec-

ommender systems [7]. One popular paradigm is the model-based

CFmethods. In suchmethods, the users and items are parameterized

3
We notice that training LightGCN for 400−600 instead of 1000 epochs only introduce

a slight performance loss, which reduces the training time of LightGCN, but this does

not affect our conclusion as we have more than three magnitudes of speedups.

by (low-dimensional) vectors and the interactions are reconstructed

based on the embeddings and model weights. The classic matrix

factorization (MF) maps the ID of users and items as embedding

vectors and uses the dot product between embedding vectors as

predicted scores. The dot product model can be further improved

by using neural networks [15, 37]. Another classic model-based CF

is to reconstruct the score for an item by a transformation of the

scores for other items, from linear auto-encoders (e.g., SLIM [27])

to deep auto-encoders (e.g., Multi-VAE [24]). Another paradigm is

graph-based CF methods. The early works (e.g., Item-rank [12] and

Bi-rank [14]) exploit the label propagation on graph and belong to

the neighborhood-based methods. These methods are often con-

sidered as heuristics and inferior to model-based methods due to

the lack of training. Recent works address this issue by developing

GCN-based methods and train GCNs in an end-to-end manner, e.g.,

GC-MC [4], NGCF [41], and LightGCN [13].

Notice that the information contained in the sparse rating matrix

or graph formulation are identical and GFT is a matrix factoriza-

tion. In this paper, we unify the two paradigms from the graph

signal processing view and identify that the low-pass filters are

the underlying key component in the two paradigms. In addition,

we show that different paradigms correspond to different low-pass

filters and these filters can be incorporated together to improve the

performance.

6.2 Spectral and Spatial GCNs
The spectral GCNs are developed from graph signal processing

with learned graph filters, which enjoy theoretical guarantees from

graph signal processing theory [33]. Nevertheless, GFT requires

full eigendecomposition, which induces prohibitive computation

for large-scale graphs. The spectral CF [52] and LCF [50] belong

to this category and thus they cannot be applied on large-scale

datasets. To speed up the computation, the spatial GCNs based on

1-hop neighbor propagation were proposed [45]. In each layer of

spatial GCNs, only neighborhood aggregations are required, and

thus the computational cost is extensively reduced. In the context

of recommendation, spatial GCNs contain GCMC [4], NGCF [41],

LightGCN [13], and PinSage [49]. A unique advantage of these

methods is the scalability, meaning that they can be applied to

large-scale sparse datasets. A recent theoretical study unified the

spectral and spatial GCNs and demonstrates that they are all low-

pass filters [3]. In the paper, we also unify the classic CF methods

via low-pass filtering, which explains the success of GCNs in CF.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1626

7 CONCLUSIONS
In this paper, we identified the importance of smoothness in the

embeddings in a successful recommendation both theoretically

and empirically, which bridges CF and graph signal processing

theory. Via the lens of graph signal processing, we showed that

the neighborhood-based methods, low-rank matrix completion,

and linear auto-encoders are all graph convolution with low-pass

filters. This further validated the power of graph convolution for

recommendation. In addition to our theoretical analysis, we also

developed a simple but hard-to-beat baseline algorithm, GF-CF.

It was demonstrated that GF-CF achieves competitive or better

performance than deep learning-basedmethods.We believe that the

insights of this investigation are inspirational to the principled GCN

architecture design for recommender systems. In the future, we will

implement the GCNs induced by classic algorithms in Table 1 and

exploit additional information, e.g., social networks and knowledge

graphs.

8 PROOFS
8.1 Proof of Theorem 3.1

Proof. Wefirst prove that (11) holds when themutual coherence

[9]) of the embeddings satisfies

𝜖 = 𝑀𝑬 (0) <

√
𝑁min

2𝑁 3

max

, (23)

and then show that as 𝑑 >
𝐶𝑁 3

max
log(|I |+ |U |)
𝑁min

, (23) holds with

probability at least 3/4.

𝒆 (1)𝑇
𝑖

𝒆 (0)
𝑗

− 𝒆 (1)𝑇
𝑖

𝒆 (0)
𝑘

=
©« 1

√
𝑁𝑖

∑
𝑙 ∈N𝑖

1√
𝑁𝑙

𝒆 (0)
𝑙

ª®¬
𝑇

(𝒆 (0)
𝑗

− 𝒆 (0)
𝑘

)

≥ 1

√
𝑁𝑖

(
1√
𝑁 𝑗

− 𝑁𝑖 − 1

√
𝑁min

𝜖 − 𝑁𝑖√
𝑁min

𝜖

)
≥ 1

√
𝑁𝑖

(
1

√
𝑁max

− 2𝑁max√
𝑁min

𝜖

)
(𝑎)
> 0

where (a) follows the assumption that 𝜖 <
√

𝑁min

2𝑁 3

max

. With Lemma

8.1, we see that 𝜖 <
√

𝑁min

2𝑁 3

max

as 𝑑 >
𝐶𝑁 3

max
log(|I |+ |U |)
𝑁min

. □

Lemma 8.1. (Theorem 3.5 in [42]) Let 𝑨 ∈ R𝑛×𝑚 with rows i.i.d.
chosen from the uniform distribution on the sphere. Then with proba-
bility at least 3/4,

𝑀𝑨 ≤ 𝐶
√

log𝑛

𝑚
.

where 𝐶 is an absolute constant.

8.2 Proof of Theorem 3.2
Proof. We first separate the embeddings 𝑬 (𝑘)

into user embed-

dings 𝑼 (𝑘)
and item embeddings 𝑽 (𝑘)

, and the individual update is

given by

𝑼 (𝑘+1) = ˜𝑹𝑽 (𝑘) , 𝑽 (𝑘+1) = ˜𝑹𝑇 𝑼 (𝑘) .

The final embeddings are

𝑉 =

(
𝛼0𝑽

(0) + 𝛼1
˜𝑹𝑇 𝑼 (0) + 𝛼2

˜𝑹𝑇 ˜𝑹𝑽 (0) + 𝛼3
˜𝑹𝑇 ˜𝑹 ˜𝑹𝑇 𝑼 (0) + · · ·

)
=

(
2𝑖≤𝐾∑
𝑖=0

𝛼2𝑖 (˜𝑹𝑇 ˜𝑹)𝑖𝑽 (0) +
2𝑖+1≤𝐾∑
𝑖=0

𝛼2𝑖+1 (˜𝑹𝑇 ˜𝑹)𝑖 ˜𝑹𝑇 𝑼 (0)
)

and 𝑼 can be computed similarly.

The final prediction of untrained LightGCN with infinitely di-

mensional embedding is given by

𝑺 = 𝑼𝑽𝑇 =

(
2𝑖≤𝐾∑
𝑖=0

𝛼2𝑖 (˜𝑹𝑇 ˜𝑹)𝑖𝑼 (0) +
2𝑖+1≤𝐾∑
𝑖=0

𝛼2𝑖+1 (˜𝑹 ˜𝑹𝑇)𝑖 ˜𝑹𝑽 (0)
)

·
(
2𝑖≤𝐾∑
𝑖=0

𝛼2𝑖 (˜𝑹𝑇 ˜𝑹)𝑖𝑽 (0) +
2𝑖+1≤𝐾∑
𝑖=0

𝛼2𝑖+1 (˜𝑹𝑇 ˜𝑹)𝑖 ˜𝑹𝑇 𝑼 (0)
)𝑇

For a pair of matrices𝑿 , 𝒀 , if the rows of𝑿 ∈ R∗×𝑑 , 𝒀 (0) ∈ R∗×𝑑
follow independently identical distribution, due to the linearity of

dot product, we have lim𝑑→∞ 𝑿𝒀𝑇 = E[𝒙1𝒚𝑇
1
], where 𝒙1 (resp.𝒚1)

denotes the first column of 𝑿 (resp. 𝒀).
Thus, as 𝑑 → ∞, we have

lim

𝑑→∞
𝑺 = E𝑼 (0) ,𝑽 (0) [𝑺] =

𝐾−1∑
𝑘=0

𝛽𝑘
˜𝑹 (˜𝑹𝑇 ˜𝑹)𝑘 .

where 𝛽𝑘 depends on [𝛼𝑘]𝑖=0, · · · ,𝐾 .
For a given user 𝑢, the estimated scores is shown as

𝒔𝑢 = �̃�𝑢
∑𝐾−1

𝑘=0
𝛽𝑘 (˜𝑹𝑇 ˜𝑹)𝑘 .

□

8.3 Proof of Theorem 4.1

Proof. We observe that
˜𝑨2 =

[
˜𝑹 ˜𝑹𝑇 0
0 ˜𝑹𝑇 ˜𝑹

]
. As

˜𝑨2
is block

diagonal, eigenvalues of
˜𝑨2

are a concatenation of eigenvalues of

˜𝑹 ˜𝑹𝑇 and
˜𝑹𝑇 ˜𝑹. For the largest eigenvalue, we have

𝜆max (˜𝑹𝑇 ˜𝑹) = 𝜆max (˜𝑹 ˜𝑹𝑇) = 𝜆max (˜𝑨2) = 𝜆max (˜𝑨)2
(𝑎)
= 1.

where (a) follows Lemma 8.2. As
˜𝑹𝑇 ˜𝑹 is positive semi-definite,

𝜆min (˜𝑹𝑇 ˜𝑹) ≥ 0. This finishes the proof. □

Lemma 8.2. Let 𝜆1 ≤ 𝜆2 ≤ · · · 𝜆 |I |+ |U | be eigenvalues of ˜𝑨. Then
−1 ≤ 𝜆1 ≤ 𝜆2 ≤ · · · 𝜆 |I |+ |U | = 1.

Proof. First, observing that ∀𝒙 ∈ S𝑛−1
, we have

𝒙𝑇 (𝑰 − ˜𝑨)𝒙 =
∑
𝑖, 𝑗

𝐴𝑖, 𝑗

(
𝑥 (𝑖)√
𝑑 (𝑖)

− 𝑥 (𝑗)√
𝑑 (𝑗)

)
2

≥ 0.

Thus,−1 ≤ 𝒙𝑇 (𝑰− ˜𝑨)𝒙 ≤ 1. Furthermore, using the vector 𝒙 = 𝑫
1

2 1,
we get

˜𝑨𝒙 = 𝑫− 1

2 𝑨𝑫− 1

2 𝑫
1

2 1 = 𝑫− 1

2 𝑨1 = 𝑫− 1

2 diag(𝑫) = 𝑫
1

2 1.

This implies that the largest eigenvalue of
˜𝑨 is 1. □

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1627

REFERENCES
[1] Fabio Aiolli. 2013. Efficient top-N recommendation for very large scale binary

rated datasets. In Proceedings of the ACM Conference on Recommender Systems.
273–280.

[2] Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang,

and Dingli Yu. 2020. Harnessing the power of infinitely wide deep nets on

small-data tasks. In Proceedings of the International Conference on Learning Repre-
sentations.

[3] Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien

Adam, and Paul Honeine. 2021. Analyzing the Expressive Power of Graph Neural

Networks in a Spectral Perspective. In Proceedings of the International Conference
on Learning Representations.

[4] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convo-

lutional matrix completion. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[5] Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi

Ma. 2021. ReduNet: AWhite-box Deep Network from the Principle of Maximizing

Rate Reduction. arXiv preprint arXiv:2105.10446 (2021).
[6] Chao Chen, Dongsheng Li, Junchi Yan, Hanchi Huang, and Xiaokang Yang. 2021.

Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning. In

Proceedings of the AAAI Conference on Artificial Intelligence.
[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for

youtube recommendations. In Proceedings of the ACMConference on Recommender
Systems. 191–198.

[8] Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, and Pascal

Frossard. 2020. Graph signal processing for machine learning: A review and new

perspectives. IEEE Signal Processing Magazine 37, 6 (2020), 117–127.
[9] David L Donoho and Michael Elad. 2003. Optimally sparse representation in

general (nonorthogonal) dictionaries via ℓ1 minimization. Proceedings of the
National Academy of Sciences 100, 5 (2003), 2197–2202.

[10] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network

for recommendation systems. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval. 515–524.

[11] Noah E Friedkin. 2011. A formal theory of reflected appraisals in the evolution

of power. Administrative Science Quarterly 56, 4 (2011), 501–529.

[12] Marco Gori, Augusto Pucci, V Roma, and I Siena. 2007. Itemrank: A random-walk

based scoring algorithm for recommender engines.. In Proceedings of the AAAI
International Joint Conference on Artificial Intelligence. 2766–2771.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval. 639–648.

[14] Xiangnan He, Ming Gao, Min-Yen Kan, and Dingxian Wang. 2016. Birank: To-

wards ranking on bipartite graphs. IEEE Transactions on Knowledge and Data
Engineering 29, 1 (2016), 57–71.

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the International
Conference on World Wide Web. 173–182.

[16] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-

forward networks are universal approximators. Neural networks 2, 5 (1989),

359–366.

[17] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for

implicit feedback datasets. In Proceedings of the IEEE International Conference on
Data Mining. 263–272.

[18] Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. 2010.

Generalized power method for sparse principal component analysis. Journal of
Machine Learning Research 11, 2 (2010).

[19] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In Proceedings of the International Conference on
Learning Representations.

[20] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. In

Proceedings of the International Conference on Learning Representations.
[21] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted

collaborative filtering model. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 426–434.

[22] Dongsheng Li, Chao Chen, Wei Liu, Tun Lu, Ning Gu, and Stephen M. Chu. 2017.

Mixture-Rank Matrix Approximation for Collaborative Filtering. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS’17). 477–485.

[23] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In Proceedings of the AAAI
Conference on Artificial Intelligence.

[24] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.

Variational autoencoders for collaborative filtering. In Proceedings of the Interna-
tional World Wide Web Conference. 689–698.

[25] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-

item collaborative filtering. IEEE Internet Computing 7, 1 (2003), 76–80.

[26] Sheng Liu, Xiao Li, Yuexiang Zhai, Chong You, Zhihui Zhu, Carlos Fernandez-

Granda, and Qing Qu. 2021. Convolutional Normalization: Improving Deep

Convolutional Network Robustness and Training. arXiv preprint arXiv:2103.00673
(2021).

[27] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-n

recommender systems. In Proceedings of the IEEE International Conference on
Data Mining. IEEE, 497–506.

[28] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. 2008. One-class collaborative filtering. In Proceedings of the IEEE
International Conference on Data Mining. 502–511.

[29] Raksha Ramakrishna, Hoi-To Wai, and Anna Scaglione. 2020. A User Guide to

Low-Pass Graph Signal Processing and Its Applications: Tools and Applications.

IEEE Signal Processing Magazine 37, 6 (2020), 74–85.
[30] Nikhil Rao, Hsiang-Fu Yu, Pradeep Ravikumar, and Inderjit S Dhillon. 2015. Col-

laborative Filtering with Graph Information: Consistency and Scalable Methods.

In Proceedings of the Advances in Neural Information Processing Systems, Vol. 2. 7.
[31] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the AUAI Conference on Uncertainty in Artificial Intelligence.

[32] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural

collaborative filtering vs. matrix factorization revisited. In Proceedings of the ACM
Conference on Recommender Systems. 240–248.

[33] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. 2021. Graph Neural Net-

works: Architectures, Stability, and Transferability. Proc. IEEE (2021).

[34] Harald Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In

Proceedings of the World Wide Web Conference. 3251–3257.
[35] Harald Steck. 2019. Markov random fields for collaborative filtering. Proceedings

of the Advances in Neural Information Processing Systems 32.
[36] Harald Steck. 2020. Autoencoders that don’t overfit towards the Identity. Pro-

ceedings of the Advances in Neural Information Processing Systems 33.
[37] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric

learning via memory-based attention for collaborative ranking. In Proceedings of
the World Wide Web Conference. 729–739.

[38] Roman Vershynin. 2018. High-dimensional probability: An introduction with
applications in data science. Vol. 47. Cambridge university press.

[39] Koen Verstrepen and Bart Goethals. 2014. Unifying nearest neighbors collabo-

rative filtering. In Proceedings of the ACM Conference on Recommender systems.
177–184.

[40] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nature methods 17, 3 (2020), 261–272.
[41] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval. 165–174.

[42] John Wright and Yi Ma. 2021. High-Dimensional Data Analysis with Low-
Dimensional Models: Principles, Computation, and Applications. Cambridge Uni-

versity Press.

[43] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-

tive denoising auto-encoders for top-n recommender systems. In Proceedings of
the ACM International Conference on Web Search and Data Mining. 153–162.

[44] Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. 2020. Continuous graph neural

networks. In Proceedings of the International Conference on Machine Learning.
10432–10441.

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks?. In Proceedings of the International Conference on
Learning Representations.

[46] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and

Stefanie Jegelka. 2020. How neural networks extrapolate: From feedforward to

graph neural networks. In Proceedings of the International Conference on Learning
Representations.

[47] Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. 2021. Optimiza-

tion of Graph Neural Networks: Implicit Acceleration by Skip Connections and

More Depth. In Proceedings of the International Conference on Machine Learning.
[48] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.

HOP-rec: high-order proximity for implicit recommendation. In Proceedings of
the ACM Conference on Recommender Systems. 140–144.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale rec-

ommender systems. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 974–983.

[50] Wenhui Yu and Zheng Qin. 2020. Graph Convolutional Network for Recommen-

dation with Low-pass Collaborative Filters. In Proceedings of the International
Conference on Machine Learning. PMLR, 10936–10945.

[51] Yao Zhang, Yun Xiong, Dongsheng Li, Caihua Shan, Kan Ren, and Yangyong Zhu.

2021. CoPE: Modeling Continuous Propagation and Evolution on Interaction

Graph. In Proceedings of the International ACM Conference on Information and
Knowledge Management.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1628

[52] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S Yu. 2018. Spectral

collaborative filtering. In Proceedings of the ACM conference on Recommender
Systems. 311–319.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1629

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations and Terminology
	2.2 Graph Signal Processing
	2.3 LightGCN Brief

	3 On the Importance of Smoothness and Low-pass Filtering
	4 A Unified Framework
	4.1 A Unified Graph Low-pass Filter Based Framework
	4.2 Interpreting Classic Methods from Graph Signal Processing Perspective
	4.3 A Simple yet Effective Baseline Algorithm

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Comparison
	5.3 Comparison with LightGCN of Large Embedding Dimension

	6 Related Works
	6.1 Collaborative Filtering Methods
	6.2 Spectral and Spatial GCNs

	7 Conclusions
	8 Proofs
	8.1 Proof of Theorem 3.1
	8.2 Proof of Theorem 3.2
	8.3 Proof of Theorem 4.1

	References

